Mechanical and Microstructural Characterization of TIG Welded Dissimilar Joints between 304L Austenitic Stainless Steel and Incoloy 800HT Nickel Alloy - Publikacja - MOST Wiedzy

Wyszukiwarka

Mechanical and Microstructural Characterization of TIG Welded Dissimilar Joints between 304L Austenitic Stainless Steel and Incoloy 800HT Nickel Alloy

Abstrakt

In this article, the mechanical properties and microstructure of 304L austenitic stainless steel/Incoloy 800HT nickel alloy dissimilar welded joints are investigated. The joints were made of 21.3 mm × 7.47 mm tubes using the TIG process with the use of S Ni 6082 nickel filler metal. No welding imperfections were found and high strength properties of joints were obtained, meeting the assumed acceptance criteria of the product’s standards. The tensile strength of the welded joints was higher than for the joined materials (Incoloy 800HT). Macro- and microscopic metallographic tests revealed the correct morphology of the joints and the appropriate structures in their critical zones. However, differences were found in the morphologies of the zones between the weld and the base materials. In fusion boundary from the side of the Incoloy 800HT alloy, no clear outline of the fusion line was observed (type A fusion boundary), while increased grain size and an epitaxial structure were observed. In turn, in the zone: weld–304L steel, a distinct fusion line was observed with areas with an increased amount of high-temperature δ ferrite (type B fusion boundary). No precipitates were found that could reduce the resistance of the joints to intergranular corrosion. A hardness decrease (approximately 30 HV0.1) in the transition zone: austenitic steel–weld and an increase of hardness (approximately 10 HV0.1) on the opposite side of the welded joint were observed.

Cytowania

  • 2 6

    CrossRef

  • 2 7

    Web of Science

  • 2 6

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 10 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Metals nr 10,
ISSN: 2075-4701
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Rogalski G., Świerczyńska A., Landowski M., Fydrych D.: Mechanical and Microstructural Characterization of TIG Welded Dissimilar Joints between 304L Austenitic Stainless Steel and Incoloy 800HT Nickel Alloy// Metals -Vol. 10,iss. 5 (2020), s.559-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/met10050559
Bibliografia: test
  1. Mytsyk, B.; Ivanytsky, Y.; Hembara, O.; Kost, Y.; Shtayura, S.; Sakharuk, O. Effects of hydrogen influence on strained steel 1020. Int. J. Hydrog. Energy 2020, 45, 10199-10208. [CrossRef] otwiera się w nowej karcie
  2. Świerczyńska, A.; Fydrych, D.; Landowski, M.; Rogalski, G.; Łabanowski, J. Hydrogen embrittlement of X2CRNiMoCuN25-6-2-super duplex stainless steel welded joints under cathodic protection. Constr. Build. Mater. 2020, 238, 117697. [CrossRef] otwiera się w nowej karcie
  3. Wasim, M.; Djukic, M.B. Hydrogen embrittlement of low carbon structural steel at macro-, micro-and nano-levels. Int. J. Hydrog. Energy 2020, 45, 2145-2156. [CrossRef] otwiera się w nowej karcie
  4. Slobodyan, M.S.; Pavlov, S.K.; Remnev, G.E. Corrosion and high-temperature steam oxidation of E110 alloy and its laser welds after ion irradiation. Corros. Sci. 2019, 152, 60-74. [CrossRef] otwiera się w nowej karcie
  5. Chmielewski, T.; Hudycz, M.; Krajewski, A.; Sałaciński, T.; Skowrońska, B.;Świercz, R. Structure investigation of titanium metallization coating deposited onto AlN ceramics substrate by means of friction surfacing process. Coatings 2019, 9, 845. [CrossRef] otwiera się w nowej karcie
  6. Lisiecki, A.;Ślizak, D. Hybrid laser deposition of Fe-based metallic powder under cryogenic conditions. Metals 2020, 10, 190. [CrossRef] otwiera się w nowej karcie
  7. Kik, T.; Moravec, J.; Nováková, I. Numerical simulations of X22CrMoV12-1 steel multilayer welding. Arch. Metall. Mater. 2019, 64, 1441-1448. [CrossRef] otwiera się w nowej karcie
  8. Tomków, J.; Czupryński, A.; Fydrych, D. The abrasive wear resistance of coatings manufactured on high-strength low-alloy (HSLA) offshore steel in wet welding conditions. Coatings 2020, 10, 219. [CrossRef] otwiera się w nowej karcie
  9. Ali, M.; Ul-Hamid, A.; Alhems, L.M.; Saeed, A. Review of common failures in heat exchangers-Part I: Mechanical and elevated temperature failures. Eng. Fail. Anal. 2020, 109, 104396. [CrossRef] otwiera się w nowej karcie
  10. Ramkumar, K.D.; Mithilesh, P.; Varun, D.; Reddy, A.R.G.; Arivazhagan, N.; Narayanan, S.; Kumar, K.G. Characterization of microstructure and mechanical properties of Inconel 625 and AISI 304 dissimilar weldments. ISIJ Int. 2020, 54, 900-908. [CrossRef] otwiera się w nowej karcie
  11. Mani, C.; Karthikeyan, R.; Kannan, S. Electrochemical impedance analysis on cryogenically treated dissimilar metal welding of 316L stainless steel and monel 400 alloy using GTAW. Metals 2019, 9, 1088. [CrossRef] otwiera się w nowej karcie
  12. Golański, G.; Zieliński, A.; Sroka, M.; Słania, J. The effect of service on microstructure and mechanical properties of HR3C heat-resistant austenitic stainless steel. Materials 2020, 13, 1297. [CrossRef] [PubMed] otwiera się w nowej karcie
  13. Adamiec, J.; Konieczna, N. The welded joints structure of the Inconel 617 alloy designed for high temperature operation in supercritical parameters boilers. Arch. Metall. Mater. 2020, 65, 243-255. [CrossRef] otwiera się w nowej karcie
  14. Wang, J.F.; Sun, Q.J.; Wang, H.; Liu, J.P.; Feng, J.C. Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding. Mater. Sci. Eng. A 2016, 676, 395-405. [CrossRef] otwiera się w nowej karcie
  15. Grudzień, M.; Tuz, L.; Pańcikiewicz, K.; Zielińska-Lipiec, A. Microstructure and properties of a repair weld in a nickel based superalloy gas turbine component. Adv. Mater. Sci. 2017, 17, 55-63. [CrossRef] otwiera się w nowej karcie
  16. Li, G.; Huang, J.; Wu, Y. An investigation on microstructure and properties of dissimilar welded Inconel 625 and SUS 304 using high-power CO 2 laser. Int. J. Adv. Manuf. Technol. 2015, 76, 1203-1214. [CrossRef] otwiera się w nowej karcie
  17. Ming, H.; Wang, J.; Han, E.H. Comparative study of microstructure and properties of low-alloy-steel/nickel -based-alloy interfaces in dissimilar metal weld joints prepared by different GTAW methods. Mater. Charact. 2018, 139, 186-196. [CrossRef] otwiera się w nowej karcie
  18. Tumer, M.; Karahan, T.; Mert, T. Evaluation of microstructural and mechanical properties of dissimilar Inconel 625 nickel alloy-UNS S32205 duplex stainless steel weldment using MIG welding. Weld. World 2020, 64, 21-35. [CrossRef] otwiera się w nowej karcie
  19. Payão Filho, J.D.C.; Passos, E.K.D.; Gonzaga, R.S.; Ferreira, R.F.; Santos, D.D.; Juliano, D.R. Ultrasonic inspection of a 9% Ni steel joint welded with Ni-based superalloy 625: Simulation and experimentation. Metals 2018, 8, 787. [CrossRef] otwiera się w nowej karcie
  20. Wang, Y.; Shao, C.; Cui, H.; Fan, M.; Ma, N.; Lu, F. Failure competition behavior of 9Cr/617 dissimilar welded joint during LCF test at elevated temperature. Mater. Sci. Eng. A 2020, 773, 138810. [CrossRef] otwiera się w nowej karcie
  21. Ahmad, H.W.; Chaudry, U.M.; Tariq, M.R.; Bae, D.H. Assessment of fatigue and electrochemical corrosion characteristics of dissimilar materials weld between alloy 617 and 12 Cr steel. J. Manuf. Process. 2020, 53, 275-282. [CrossRef] otwiera się w nowej karcie
  22. Hejripour, F.; Aidun, D.K. Consumable selection for arc welding between stainless steel 410 and Inconel 718. J. Mater. Proc. Technol. 2017, 245, 287-299. [CrossRef] otwiera się w nowej karcie
  23. Dong, L.; Zhang, X.; Han, Y.; Peng, Q.; Deng, P.; Wang, S. Effect of surface treatments on microstructure and stress corrosion cracking behavior of 308L weld metal in a primary pressurized water reactor environment. Corros. Sci. 2020, 166, 108465. [CrossRef] otwiera się w nowej karcie
  24. DuPont, J.N.; Lippold, J.C.; Kiser, S.D. Welding Metallurgy and Weldability of Nickel Base Alloys; otwiera się w nowej karcie
  25. Kumar, S.A.; Sathiya, P. Effects of heat input on the mechanical and metallurgical characteristics of TIG welded Incoloy 800HT joints. Arch. Metall. Mater. 2017, 62, 1673-1679. [CrossRef] otwiera się w nowej karcie
  26. Sreevidya, N.; Abhijith, S.; Albert, S.K.; Vinod, V.; Banerjee, I. Failure analysis of service exposed austenitic stainless steel pipelines. Eng. Fail. Anal. 2020, 108, 104337. [CrossRef] otwiera się w nowej karcie
  27. Mortezaie, A.; Shamanian, M. An assessment of microstructure, mechanical properties and corrosion resistance of dissimilar welds between Inconel 718 and 310S austenitic stainless steel. Int. J. Pres. Ves. Pip. 2014, 116, 37-46. [CrossRef] otwiera się w nowej karcie
  28. Dokme, F.; Kulekci, M.K.; Esme, U. Microstructural and mechanical characterization of dissimilar metal welding of Inconel 625 and AISI 316L. Metals 2018, 8, 797. [CrossRef] otwiera się w nowej karcie
  29. Shakil, M.; Ahmad, M.; Tariq, N.H.; Hasan, B.A.; Akhter, J.I.; Ahmed, E.; Mehmood, M.A.; Choudhry, M.A.; Iqbal, M. Microstructure and hardness studies of electron beam welded Inconel 625 and stainless steel 304L. Vacuum 2014, 110, 121-126. [CrossRef] otwiera się w nowej karcie
  30. Silva, G.M.D.; Ferreira, E.A.; Castro, J.A.D. Resistência à corrosão de juntas dissimilares dos aços AISI 316L e da liga Inconel 718. Soldagem Insp. 2019, 24, 1-11. [CrossRef] otwiera się w nowej karcie
  31. Demarque, R.; Silva, R.D.S.; Santos, E.P.D.; Castro, J.A.D. Avaliação de parâmetros de soldagem nas características de juntas dissimilares Inconel 718-Inox 316L soldadas pelo processo TIG autógeno. Soldagem Insp. 2018, 23, 380-392. [CrossRef] otwiera się w nowej karcie
  32. Kosturek, R.; Wachowski, M.;Śnieżek, L.; Gloc, M. The influence of the post-weld heat treatment on the microstructure of Inconel 625/carbon steel bimetal joint obtained by explosive welding. Metals 2019, 9, 246. [CrossRef] otwiera się w nowej karcie
  33. Fang, Y.J.; Jiang, X.S.; Mo, D.F.; Song, T.F.; Luo, Z.P. Microstructure and mechanical properties of the vacuum diffusion bonding joints of 4J29 Kovar alloy and 316L stainless steel using pure cobalt interlayer. Vacuum 2019, 168, 108847. [CrossRef] otwiera się w nowej karcie
  34. Mitelea, I.; Utu, I.D.; Urlan, S.D.; Crăciunescu, C.M. The effect of the solution treatment onto the microstructure and mechanical properties of MAG pulsed welded joints from X2CrNiMoN22-5-3 duplex stainless steels. Materialwiss. Werkstoff. 2017, 48, 1040-1048. [CrossRef] otwiera się w nowej karcie
  35. Rogalski, G.;Świerczyńska, A.; Fydrych, D.; Landowski, M. The influence of solution annealing temperature on the properties of Lean Duplex 2101 welded joints in tubes. Weld. Technol. Rev. 2019, 91, 49-59. [CrossRef] otwiera się w nowej karcie
  36. Ramkumar, K.D.; Patel, S.D.; Praveen, S.S.; Choudhury, D.J.; Prabaharan, P.; Arivazhagan, N.; Xavior, M.A. Influence of filler metals and welding techniques on the structure-property relationships of Inconel 718 and AISI 316L dissimilar weldments. Mater. Des. 2014, 62, 175-188. [CrossRef] otwiera się w nowej karcie
  37. Wang, W.; Lu, Y.; Ding, X.; Shoji, T. Microstructures and microhardness at fusion boundary of 316 stainless steel/Inconel 182 dissimilar welding. Mater. Charact. 2015, 107, 255-261. [CrossRef] otwiera się w nowej karcie
  38. Wang, W.; Han, Y.; Liu, T.; Lu, Y.; Shoji, T. Effect of surface potential on corrosion behavior of the fusion boundary in the dissimilar welds between 316L stainless steels and Inconel 182 alloy. J. Mater. Sci. 2020, 55, 774-785. [CrossRef] otwiera się w nowej karcie
  39. Ramkumar, T.; Selvakumar, M.; Narayanasamy, P.; Begam, A.A.; Mathavan, P.; Raj, A.A. Studies on the structural property, mechanical relationships and corrosion behaviour of Inconel 718 and SS 316L dissimilar joints by TIG welding without using activated flux. J. Manuf. Process. 2017, 30, 290-298. [CrossRef] otwiera się w nowej karcie
  40. Kumar, K.G.; Ramkumar, K.D.; Arivazhagan, N. Characterization of metallurgical and mechanical properties on the multi-pass welding of Inconel 625 and AISI 316L. J. Mech. Sci. Techol. 2015, 29, 1039-1047. [CrossRef] otwiera się w nowej karcie
  41. Sayiram, G.; Arivazhagan, N. Microstructural characterization of dissimilar welds between Incoloy 800H and 321 austenitic stainless steel. Mater. Charact. 2015, 102, 180-188. [CrossRef] otwiera się w nowej karcie
  42. Zhou, S.; Chai, D.; Yu, J.; Ma, G.; Wu, D. Microstructure characteristic and mechanical property of pulsed laser lap-welded nickel-based superalloy and stainless steel. J. Manuf. Process. 2017, 25, 220-226. [CrossRef] otwiera się w nowej karcie
  43. Ramkumar, K.D.; Prabu, S.S.; Arivazhagan, N. Investigation on the fusion zone microstructures and mechanical integrity of AISI 904L and Inconel 625 weld joints. Mater. Res. Express 2015, 6, 086540. [CrossRef] otwiera się w nowej karcie
  44. Hosseini, H.S.; Shamanian, M.; Kermanpur, A. Microstructural and weldability analysis of Inconel617/AISI 310 stainless steel dissimilar welds. Int. J. Pres. Ves. Pip. 2016, 144, 18-24. [CrossRef] otwiera się w nowej karcie
  45. Kourdani, A.; Derakhshandeh-Haghighi, R. Evaluating the properties of dissimilar metal welding between Inconel 625 and 316L stainless steel by applying different welding methods and consumables. Metal. Mater. Trans. 2018, 49, 1231-1243. [CrossRef] otwiera się w nowej karcie
  46. Safari, M.; Mostaan, H.; Derakhshan, E. Microstructual and mechanical studies of the dissimilar tabular joints of Incoloy alloy 825 and AISI 316 stainless steel. J. Mar. Eng. Technol. 2018, 18, 1-10. [CrossRef] otwiera się w nowej karcie
  47. Górka, J.; Przybyła, M.; Szmul, M.; Chudzio, A.; Ładak, D. Orbital TIG welding of titanium tubes with perforated bottom made of titanium-clad steel. Adv. Mater. Sci. 2019, 19, 55-64. [CrossRef] otwiera się w nowej karcie
  48. Bouzid, A.H.; Pourreza, M. Analysis of residual stresses in the transition zone of tube-to-tubesheet joints. J. Pressure Vessel Technol. 2019, 141. [CrossRef] otwiera się w nowej karcie
  49. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 33 razy

Publikacje, które mogą cię zainteresować

Meta Tagi