MERPSYS: An environment for simulation of parallel application execution on large scale HPC systems - Publikacja - MOST Wiedzy

Wyszukiwarka

MERPSYS: An environment for simulation of parallel application execution on large scale HPC systems

Abstrakt

In this paper we present a new environment called MERPSYS that allows simulation of parallel application execution time on cluster-based systems. The environment offers a modeling application using the Java language extended with methods representing message passing type communication routines. It also offers a graphical interface for building a system model that incorporates various hardware components such as CPUs, GPUs, interconnects and easily allows various formulas to model execution and communication times of particular blocks of code. A simulator engine within the MERPSYS environment simulates execution of the application that consists of processes with various codes, to which distinct labels are assigned. The simulator runs one Java thread per label and scales computations and communication times adequately. This approach allows fast coarse-grained simulation of large applications on large-scale systems. We have performed tests and verification of results from the simulator for three real parallel applications implemented with C/MPI and run on real HPC clusters: a master-slave code computing similarity measures of points in a multidimensional space, a geometric single program multiple data parallel application with heat distribution and a divide-and-conquer application performing merge sort. In all cases the simulator gave results very similar to the real ones on configurations tested up to 1000 processes. Furthermore, it allowed us to make predictions of execution times on configurations beyond the hardware resources available to us.

Cytowania

  • 1 5

    CrossRef

  • 1 3

    Web of Science

  • 1 7

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 102 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
SIMULATION MODELLING PRACTICE AND THEORY nr 77, strony 124 - 140,
ISSN: 1569-190X
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Czarnul P., Kuchta J., Matuszek M., Proficz J., Rościszewski P., Szymański J., Wójcik M.: MERPSYS: An environment for simulation of parallel application execution on large scale HPC systems// SIMULATION MODELLING PRACTICE AND THEORY. -Vol. 77, (2017), s.124-140
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.simpat.2017.05.009
Bibliografia: test
  1. Coarse-grained modeling of the application and system in MERPSYS. otwiera się w nowej karcie
  2. Simulations and calibration of cost functions based on selected results from real runs. otwiera się w nowej karcie
  3. Simulation for other configurations (input data size, the number of processes etc.) otwiera się w nowej karcie
  4. Intel ® Xeon ® CPUs, http://ark.intel.com/#@Processors , online; accessed 12-April-2017.
  5. NVIDIA GPUs, https://www.top500.org/system/178764 , online; accessed 12-April-2017. otwiera się w nowej karcie
  6. H. Fu , J. Liao , J. Yang , L. Wang , Z. Song , X. Huang , C. Yang , W. Xue , F. Liu , F. Qiao , et al. , The sunway taihulight supercomputer: system and applications, Sci. China Inf. Sci. 59 (7) (2016) 072001 . otwiera się w nowej karcie
  7. BOINC, http://boinc.berkeley.edu/ , online; accessed 12-April-2017. otwiera się w nowej karcie
  8. Globus toolkit, http://toolkit.globus.org/toolkit/ , online; accessed 12-April-2017. otwiera się w nowej karcie
  9. UNICORE, http://www.unicore.eu/documentation/manuals/unicore/files/client _ intro.pdf , online; accessed 12-April-2017. otwiera się w nowej karcie
  10. Gridbus, http://gridbus.cs.mu.oz.au/middleware/ , online; accessed 12-April-2017. otwiera się w nowej karcie
  11. P. Rosciszewski, P. Czarnul, R. Lewandowski, M. Schally-Kacprzak, Kernelhive: a new workflow-based framework for multilevel high performance com- puting using clusters and workstations with CPUs and GPUs, Concurrency Comput. 28 (9) (2016) 2586-2607 . http://dx.doi.org/10.1002/cpe.3719 . otwiera się w nowej karcie
  12. MERPSYS server, http://merpsys.eti.pg.gda.pl/portal , online; accessed 12-April-2017. otwiera się w nowej karcie
  13. P. Czarnul , J. Kuchta , P. Ro ściszewski , J. Proficz , Modeling energy consumption of parallel applications, in: 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), 2016, pp. 855-864 . otwiera się w nowej karcie
  14. P. Rosciszewski, Executing multiple simulations in the MERPSYS environment, in: Modeling Large-Scale Computing Systems. Practical Approaches in MERPSYS, Gdansk University of Technology, 2016, pp. 123-133 . 978-83-938367-2-7, https://repository.os.niwa.gda.pl/handle/niwa _ item/138 .
  15. W. Kreutzer, J. Hopkins, M. van Mierlo, Simjava -a framework for modeling queueing networks in java, in: Proceedings of the 29th Conference on Winter Simulation, WSC '97, IEEE Computer Society, Washington, DC, USA, 1997, pp. 4 83-4 88 . http://dx.doi.org/10.1145/26 8437.26 854 8 . otwiera się w nowej karcie
  16. A. Varga, OMNet++, in: Modeling and Tools for Network Simulation, Springer Berlin Heidelberg, 2010, pp. 35-59, doi: 10.1007/978-3-642-12331-3 _ 3 . otwiera się w nowej karcie
  17. R. Buyya, M. Murshed, Gridsim: a toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing, Concurrency Comput. 14 (13-15) (2002) 1175-1220, doi: 10.1002/cpe.710 . otwiera się w nowej karcie
  18. J. Proficz, P. Czarnul, Performance and Power-Aware Modeling of MPI Applications for Cluster Computing, Springer International Publishing, Cham, 2016, pp. 199-209 . http://dx.doi.org/10.1007/978-3-319-32152-3 _ 19 . otwiera się w nowej karcie
  19. W.E. Denzel, J. Li, P. Walker, Y. Jin, A framework for end-to-end simulation of high-performance computing systems, in: Proceedings of the 1st In- ternational Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, Simutools '08, ICST, vol. 21, Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, ICST, Brussels, Belgium, Belgium, 2008 . pp. 21:1-21:10. http://dl.acm.org/citation.cfm?id=1416222.1416248 . otwiera się w nowej karcie
  20. Message passing interface forum, 2015, MPI : A Message-Passing Interface Standard, Version 3.1. otwiera się w nowej karcie
  21. R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F. De Rose, R. Buyya, Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms, Softw. Pract. Exper. 41 (1) (2011) 23-50 . http://dx.doi.org/10.1002/spe.995 . otwiera się w nowej karcie
  22. A. Medina, A. Lakhina, I. Matta, J. Byers, Brite: Boston University representative internet topology generator, 2001, otwiera się w nowej karcie
  23. S. Bak, M. Krystek, K. Kurowski, A. Oleksiak, W. Piatek, J. Weglarz, GSSIM -A tool for distributed computing experiments, Sci. Program. 19 (4) (2011) 231-251 . http://dx.doi.org/10.3233/SPR-2011-0332 . otwiera się w nowej karcie
  24. H. Adalsteinsson, S. Cranford, D.A. Evensky, J.P. Kenny, J. Mayo, A. Pinar, C.L. Janssen, A simulator for large-scale parallel computer architectures, Int. J. Distrib. Syst. Technol. 1 (2) (2010) 57-73, doi: 10.4018/jdst.2010040104 . otwiera się w nowej karcie
  25. H. Casanova, A. Legrand, M. Quinson, Simgrid: a generic framework for large-scale distributed experiments, in: Proceedings of the Tenth International Conference on Computer Modeling and Simulation, UKSIM '08, IEEE Computer Society, Washington, DC, USA, 2008, pp. 126-131 . http://dx.doi.org/10. 1109/UKSIM.2008.28 . otwiera się w nowej karcie
  26. B. Donassolo, H. Casanova, A. Legrand, P. Velho, Fast and scalable simulation of volunteer computing systems using simgrid, in: Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, HPDC '10, ACM, New York, NY, USA, 2010, pp. 605-612 . http://dx. doi.org/10.1145/1851476.1851565 . otwiera się w nowej karcie
  27. C.L. Dumitrescu , I. Foster , Gangsim: a simulator for grid scheduling studies, in: Cluster Computing and the Grid, 2005. CCGrid 2005. IEEE International Symposium on, vol. 2, IEEE, 2005, pp. 1151-1158 . otwiera się w nowej karcie
  28. T.T. Sa , R. Calheiros , D. Gomes , Cloudreports: an extensible simulation tool for energy-aware cloud computing environments, in: Cloud Computing, Springer International Publishing, 2014, pp. 127-142 . ISBN 978-3-319-10529-1.
  29. B. Pranggono , D. Alboaneen , H. Tianfield , 11 Simulation Tools for Cloud Computing, CRC Press, 2014 . otwiera się w nowej karcie
  30. A. Bashar, Modeling and simulation frameworks for cloud computing environment: a critical evaluation, Int. J. Comput. Inf. Eng. 1(9) 1 −6, http: //www.pmu.edu.sa/kcfinder/upload/files/ICCCSS2014 _ Abul _ Bashar.pdf .
  31. R. Malhotra, P. Jain, Study and comparison of cloudsim simulators in the cloud computing, SIJ Trans. Comput. Sci. Eng. Appl., 1(4) 111 −115. otwiera się w nowej karcie
  32. M. Kaleem , P. Khan , Commonly used simulation tools for cloud computing research, in: Computing for Sustainable Global Development (INDIACom), 2015 2nd International Conference on, 2015, pp. 1104-1111 . otwiera się w nowej karcie
  33. A . Ahmed , A .S. Sabyasachi , Cloud computing simulators: a detailed survey and future direction, in: Advance Computing Conference (IACC), 2014 IEEE International, IEEE, 2014, pp. 866-872 . otwiera się w nowej karcie
  34. P. Czarnul, P. Rosciszewski, M.R. Matuszek, J. Szymanski, Simulation of parallel similarity measure computations for large data sets, in: 2nd IEEE International Conference on Cybernetics, CYBCONF 2015, Gdynia, Poland, June 24-26,2015, IEEE, 2015, pp. 472-477 . http://dx.doi.org/10.1109/CYBConf. 2015.7175980 . otwiera się w nowej karcie
  35. P. Czarnul, M. Matuszek, Performance modeling and prediction of real application workload in a volunteer-based system, in: Applications of Informa- tion Systems in Engineering and Bioscience, Proceedings of 13th International Conference on Software Engineering, Parallel and Distributed Systems conference (SEPADS), WSEAS, Gdansk, Poland, 2014, pp. 37-45 . ISBN: 978-960-474-381-0, http://www.wseas.us/e-library/conferences/2014/Gdansk/ SEBIO/SEBIO-03.pdf . otwiera się w nowej karcie
  36. P. Rosciszewski , Modeling and simulation for exploring power/time trade-off of parallel deep neural network training, in: Proceedings of ICCS 2017 Conference, Zurich, Switzerland, Procedia Computer Science, 2017 . In press. otwiera się w nowej karcie
  37. P. Czarnul, K. Grzeda, Parallel simulations of electrophysiological phenomena in myocardium on large 32 and 64-bit linux clusters, in: P. Kac- suk, J. Dongarra (Eds.), Recent Advances in Parallel Virtual Machine and Message Passing Interface, 11th European PVM/MPI Users' Group Meet- ing, Budapest, Hungary, September 19-22, 2004, Proceedings, Vol. 3241 of Lecture Notes in Computer Science, Springer, 2004, pp. 234-241 . http: //dx.doi.org/10.1007/978-3-540-30218-6 _ 35 . otwiera się w nowej karcie
  38. K. Key, J. Ovall, A parallel goal-oriented adaptive finite element method for 2.5-d electromagnetic modelling, Geophys. J. Int. 186 (1) (2011) 137-154 . http://dx.doi.org/10.1111/j.1365-246X.2011.05025.x . otwiera się w nowej karcie
  39. S. Buckeridge, R. Scheichl, Parallel geometric multigrid for global weather prediction, Numer. Linear Algebra Appl. 17 (2-3) (2010) 325-342 . http: //dx.doi.org/10.1002/nla.699 . otwiera się w nowej karcie
  40. P. Czarnul, Parallelization of divide-and-conquer applications on intel xeon phi with an openmp based framework, in: J. Swiatek, L. Borzemski, A. Grzech, Z. Wilimowska (Eds.), Information Systems Architecture and Technology: Proceedings of 36th International Conference on Information Systems Architecture and Technology -ISAT 2015 -Part III, Karpacz, Poland, September 20-22,2015, Vol. 431 of Advances in Intelligent Systems and Computing, Springer, 2015, pp. 99-111 . http://dx.doi.org/10.1007/978-3-319-28564-1 _ 9 . otwiera się w nowej karcie
  41. Java EE 1.7, http://www.oracle.com/technetwork/java/javaee/tech/index.html , online; accessed 12-April-2017.
  42. Java EE full profile, http://jcp.org/aboutJava/communityprocess/final/jsr342/index.html , online; accessed 12-April-2017. otwiera się w nowej karcie
  43. PostgreSQL Server, http://www.postgresql.org/docs/ , online; accessed 12-April-2017. otwiera się w nowej karcie
  44. Oracle, Java DataBase Connectivity Tutorial, http://docs.oracle.com/javase/tutorial/jdbc/basics/index.html . otwiera się w nowej karcie
  45. Java web start technology, http://jcp.org/aboutJava/communityprocess/final/jsr056/index.html , online; accessed 12-April-2017. otwiera się w nowej karcie
  46. Java message service, http://jcp.org/aboutJava/communityprocess/final/jsr914/index.html , online; accessed 12-April-2017. otwiera się w nowej karcie
  47. Galera+ cluster, http://task.gda.pl/kdm/sprzet/gplus/ , online; accessed 12-April-2017. otwiera się w nowej karcie
  48. I.H. Witten , E. Frank , Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann, 2005 . otwiera się w nowej karcie
  49. T.M. Cover , P.E. Hart , Nearest neighbor pattern classification, Inf. Theory IEEE Trans. 13 (1) (1967) 21-27 . otwiera się w nowej karcie
  50. M. Du, X.-s. Chen, Accelerated k-nearest neighbors algorithm based on principal component analysis for text categorization, J. Zhejiang Univ. SCI. C 14 (6) (2013) 407-416 . http://dx.doi.org/10.1631/jzus.C1200303 . otwiera się w nowej karcie
  51. J.A. Hartigan , M.A. Wong , Algorithm AS 136: a k-means clustering algorithm, Appl. Stat. 28 (1978) 100-108 . otwiera się w nowej karcie
  52. R.F.V.d. Wijngaart, Nas Parallel Benchmarks Version 2.4, Technical Report NAS Technical Report NAS-02-007, NASA Advanced Supercomputing (NAS) Division, 2002 . https://www.nas.nasa.gov/assets/pdf/techreports/2002/nas-02-007.pdf .
Weryfikacja:
Politechnika Gdańska

wyświetlono 139 razy

Publikacje, które mogą cię zainteresować

Meta Tagi