Methods of assaying volatile oxygenated organic compounds in effluent samples by gas chromatography—A review - Publikacja - MOST Wiedzy

Wyszukiwarka

Methods of assaying volatile oxygenated organic compounds in effluent samples by gas chromatography—A review

Abstrakt

The paper is a review of the procedures for the determination of volatile and semivolatile oxygenated organic compounds (O-VOCs) in effluent samples by gas chromatography. Current trends and outlook for individual steps of the procedure for the determination of O-VOCs in effluents are discussed. The available sample preparation techniques and their limitations are described along with GC capillary columns used for O-VOCs separation and selective and universal detectors used for their determination. The results of determination of O-VOC content in various types of real effluents are presented. The lack of legal regulations regarding the presence of the majority of O-VOCs is pointed out as well as the availability of just a few procedures allowing a comprehensive evaluation of the O-VOC content in effluents.

Cytowania

  • 6 2

    CrossRef

  • 0

    Web of Science

  • 6 2

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 370 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
JOURNAL OF CHROMATOGRAPHY A nr 1592, strony 143 - 160,
ISSN: 0021-9673
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Makoś P., Przyjazny A., Boczkaj G.: Methods of assaying volatile oxygenated organic compounds in effluent samples by gas chromatography—A review// JOURNAL OF CHROMATOGRAPHY A. -Vol. 1592, (2019), s.143-160
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.chroma.2019.01.045
Bibliografia: test
  1. E. Gallego, F.J. Roca, J.F. Perales , G. Sánchez, P. Esplugas, Characterization and determination of the odorous 748 charge in the indoor air of a waste treatment facility through the evaluation of volatile organic compounds 749 (VOCs) using TD-GC/MS, Waste Manage. 32 (2012) 2469-2481. otwiera się w nowej karcie
  2. B. Nijssen, T. Kamperman, J. Jetten, Acetaldehyde in mineral water stored in polyethylene terephtalate (PET) 751 bottles: odour threshold and quantification, Packag. Technol. Sci. 9 (1996) 175-185. otwiera się w nowej karcie
  3. P.H. Dalton, D.D. Dilks, M.I. Banton, Evaluation of odor and sensory irritation thresholds for methyl isobutyl 753 ketone in humans, AIHAJ, 61 (2000) 340-350. otwiera się w nowej karcie
  4. 4. Regulation of the Minister of Health of 28 September 2005 on the list of dangerous substances and their 755 classification and labeling (Dz. U. 2005 nr 201, poz. 1674). otwiera się w nowej karcie
  5. R.M. Thomas, The rising incidence of asthma, Asthma Mag. 4 (1999) 6-8. otwiera się w nowej karcie
  6. M. A. Ullah, K-H. Kim, J.E. Szulejko, J. Cho, The gas chromatographic determination of volatile fatty acids in 758 wastewater samples: Evaluation of experimental biases in direct injection method against thermal desorption 759 method, Anal. Chim. Acta 820 (2014) 159-167. otwiera się w nowej karcie
  7. A. Talaiekhozani, M. Bagheri, A. Goli, M.R.T. Khoozani, An overview of principles of odor production, emission, 761 and control methods in wastewater collection and treatment systems, J. Environ. Manage. 170 (2016) 186- otwiera się w nowej karcie
  8. G. Boczkaj, A. Przyjazny, M. Kamiński, Characteristics of volatile organic compounds emission profiles from hot 764 road bitumens, Chemosphere 104 (2014) 23-30. otwiera się w nowej karcie
  9. G. Boczkaj, M. Kamiński, A. Przyjazny, Process control and investigation of oxidation kinetics of postoxidative 766 effluents using gas chromatography with pulsed flame photometric detector (GC-PFPD), Ind. Eng.Chem. Res. 767 49 (2010) 12654-12662. otwiera się w nowej karcie
  10. E. Cetin, M. Odabasi, R. Seyfioglu, Ambient volatile organic compound (VOC) concentrations around a 769 petrochemical complex and a petroleum refinery, Sci. Total Environ. 312 (2003) 103-112. otwiera się w nowej karcie
  11. G. Boczkaj, P. Makoś, A. Przyjazny, Application of dispersive liquid -liquid microextraction and gas 771 chromatography-mass spectrometry for the determination of oxygenated volatile organic compounds in 772 effluents from the production of petroleum bitumen, J. Sep. Sci. 39 (2016) 2604 -2615. otwiera się w nowej karcie
  12. G. Boczkaj, P. Makoś, A. Przyjazny, Application of dynamic headspace and gas chromatography coupled to 774 mass spectrometry (DHS-GC-MS) for the determination of oxygenated volatile organic compounds in refinery 775 effluents, Anal. Methods 8 (2016) 3570 -3577. otwiera się w nowej karcie
  13. A. Fernandes, P. Makoś, G. Boczkaj, Treatment of bitumen post oxidative effluents by sulfate radicals based 777 advanced oxidation processes (S-AOPs) under alkaline pH conditions, J. Clean. Prod. (2018) DOI: 778 10.1016/j.jclepro.2018.05.207. otwiera się w nowej karcie
  14. M. Gągol, A. Przyjazny, G. Boczkaj, Effective method of treatment of industrial effluents under basic pH 780 conditions using acoustic cavitation -A comprehensive comparison with hydrodynamic cavitation processes. otwiera się w nowej karcie
  15. Chem. Eng. Process. 128 (2018) 103 -113. otwiera się w nowej karcie
  16. L. Ciofia, C. Ancillotti, U. Chiuminatto, D. Fibbi, L. Checchini, S. Orlandini, M. Del Bubba, Liquid 783 chromatographic-tandem mass spectrometric method for the simultaneous determination of alkylphenols 784 polyethoxylates, alkylphenoxy carboxylates and alkylphenols in wastewater and surface-water, J. Chromatogr. 785 A 1362 (2014) 75-88. otwiera się w nowej karcie
  17. L. Martínkova, M. Chmatal, The integration of cyanide hydratase and tyrosinase catalysts enables effective 787 degradation of cyanide and phenol in coking wastewaters, Water Res. 102 (2016) 90-95. otwiera się w nowej karcie
  18. B. Yu, Y. Song, L. Han, H. Yu, Y. Liu, H. Liu, Optimizations of packed sorbent and inlet temperature for large 789 volume-direct aqueous injection-gas chromatography to determine high boiling volatile organic compounds in 790 water, J. Chromatogr. A, 1356 (2014) 221-229. otwiera się w nowej karcie
  19. P. Vergine, F. Sousa, M. Lopes, F. Silva, T. Gameiro, H. Nadais, I. Capela, Synthetic soft drink wastewater 792 suitability for the production of volatile fatty acids, Process Biochem.50 (2015) 1308-1312. otwiera się w nowej karcie
  20. 19. R. Beale, P.S. Liss, J.L. Dixon, P.D. Nightingale, Quantification of oxygenated volatile organic compounds in 794 seawater by membrane inlet-proton transfer reaction/mass spectrometry. Anal. Chim. Acta706 (2011) 128- otwiera się w nowej karcie
  21. J.A. Cruwys, R.M. Dinsdale, F.R. Hawkes , D.L. Hawkes, Development of a static headspace gas 842 chromatographic procedure for the routine analysis of volatile fatty acids in wastewaters, J. Chromatogr. A 843 945 (2002) 195-209. otwiera się w nowej karcie
  22. B. Kolb, L.S. Ettre, Static Headspace-Gas Chromatography: Theory and Practice, 2nd Edition, Wiley, 2006. 845 39. A. Kremser, M.A. Jochmann, T. C. Schmidt, Systematic comparison of static and dynamic headspace sampling 846 techniques for gas chromatography. Anal. Bioanal. Chem. 408 (2016) 6567-6579.
  23. P.L. Wylie, Comparing headspace with purge and trap for analysis of volatile priority pollutants, J. Am. Water 848 Works Assoc. 80 (1988) 65-72. otwiera się w nowej karcie
  24. C. Soria, I. Martínez-Castro, J. Sanz, Study of the precision in the purge-and-trap-gas chromatography-mass 850 spectrometry analysis of volatile compounds in honey, J. Chromatogr. A 1216 (2009) 3300-3304. otwiera się w nowej karcie
  25. A.C. Soria, M.J. García-Sarrió, M.L. Sanz, Volatile sampling by headspace techniques, TrAC 71 (2015) 85-99. otwiera się w nowej karcie
  26. H.-W. Liu, Y.-T. Liu, B.-Z. Wu, H.-C. Nian, H.-J. Chen, K.-H. Chiu, J.-G. Lo, Process sampling module coupled with 853 purge and trap-GC-FID for in situ auto-monitoring of volatile organic compounds in wastewater, Talanta 80 854 (2009) 903-908. otwiera się w nowej karcie
  27. A. Tanabe, Y. Tsuchida, T. Ibaraki, K. Kawata, A. Yasuhara, T. Shibamoto, Investigation of methyl tert-butyl 856 ether levels in river-, ground-, and sewage-waters analyzed using a purge-and-trap interfaced to a gas 857 chromatograph-mass spectrometer. J. Chromatogr. A, 1066 (2005) 159-164. otwiera się w nowej karcie
  28. C. Wu, Y. Zhou, Q. Sun, L. Fu, H. Xi, Y. Yua, R. Yu, Appling hydrolysis acidification-anoxic-oxic process in the 859 treatment of petrochemical wastewater: From bench scale reactor to full scale wastewater treatment plant, J. otwiera się w nowej karcie
  29. Hazard. Mater. 309 (2016) 185-191. otwiera się w nowej karcie
  30. L.H. Wartelle, W.E. Marshall , C.A. Toles , M.M. Johns, Comparison of nutshell granular activated carbons to 862 commercial adsorbents for the purge-and-trap gas chromatographic analysis of volatile organic compounds. J. otwiera się w nowej karcie
  31. Chromatogr. A, 879 (2000) 169-175.
  32. M. A. Farajzadeh, N. Nouri, P. Khorram, Derivatization and microextraction methods for determination of 865 organic compounds by gas chromatography, TrAC 55 (2014) 14-23. otwiera się w nowej karcie
  33. G. Manni, F. Caron, Calibration and determination of volatile fatty acids in waste leachates by gas 867 chromatography, J. Chromatogr. A 690 (1995) 237-242. otwiera się w nowej karcie
  34. 49. N.T. Mkhize, T.A.M. Msagati, B.B. Mamba, M. Momba, Determination of volatile fatty acids in wastewater by 869 solvent extraction and gas chromatography, Phys Chem Earth 67-69 (2014) 86-92. otwiera się w nowej karcie
  35. A. Banel, B.Zygmunt, Application of gas chromatography-mass spectrometry preceded by solvent extraction to 871 determine volatile fatty acids in wastewater of municipal, animal farm and landfill origin, Water Sci. Technol. 872 63 (2011) 590-597. otwiera się w nowej karcie
  36. A. Latorre, A. Rigol, S. Lacorte, D. Barcelo, Comparison of gas chromatography-mass spectrometry and liquid 874 chromatography-mass spectrometry for the determination of fatty and resin acids in paper mill process 875 waters. J. Chromatogr. A 991 (2003) 205-215. otwiera się w nowej karcie
  37. A. Rigol, A. Latorre, S. Lacorte, D. Barceló, Determination of toxic compounds in paper-recycling process 877 waters by gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry, J. otwiera się w nowej karcie
  38. Chromatogr. A 963 (2002) 265-275. otwiera się w nowej karcie
  39. J.L. Vılchez, A. Zafra, A. González-Casado, E. Hontoria, M. del Olmo. Determination of trace amounts of 880 bisphenol F, bisphenol A and their diglycidyl ethers in wastewater by gas chromatography-mass 881 spectrometry, Anal. Chim. Acta 431 (2001) 31-40. otwiera się w nowej karcie
  40. E. Carasek, L. Morés, J. Merib, Basic principles, recent trends and future directions of microextraction 883 techniques for the analysis of aqueous environmental samples. Trends Environ. Anal. Chem. 19 (2018) 1-18. otwiera się w nowej karcie
  41. T. Zhang, X. Chen, P. Liang, C. Liu, Determination of Phenolic Compounds in Wastewater by Liquid-Phase 885 otwiera się w nowej karcie
  42. Microextraction Coupled with Gas Chromatography, J. Chromatogr. Sci. 44 (2006) 619 -624. otwiera się w nowej karcie
  43. J. Wu, H. K. Lee, Ion-pair dynamic liquid-phase microextraction combined with injection-port derivatization for 887 the determination of long-chain fatty acids in water samples, J. Chromatogr. A 1133 (2006) 13-20. otwiera się w nowej karcie
  44. J.M. Kokosa, Advances in solvent microextraction techniques, TrAC 43 (2013) 2-13. otwiera się w nowej karcie
  45. J. Lee, H.K. Lee, Fully Automated Dynamic In-Syringe Liquid-Phase Microextraction and On-Column 890 otwiera się w nowej karcie
  46. Derivatization of Carbamate Pesticides with Gas Chromatography/Mass Spectrometric Analysis, Anal. Chem. 891 83 (2011) 6856-6861. otwiera się w nowej karcie
  47. 59. Y. C. Fiamegos, A.-P. Kefala, C.D. Stalikas, Ion-pair single-drop microextraction versus phase-transfer catalytic 893 extraction for the gas chromatographic determination of phenols as tosylated derivatives, J. Chromatogr. A 894 1190 (2008) 44-51. otwiera się w nowej karcie
  48. 60. F.-Q. Zhao, J. Li, B.-Z. Zeng, Coupling of ionic liquid-based headspace single-drop microextraction with GC for 896 sensitive detection of phenols, J. Sep. Sci. 31 (2008) 3045 -3049. otwiera się w nowej karcie
  49. Y.C. Fiamegos, C. D. Stalikas, In-drop derivatisation liquid-phase microextraction assisted by ion-pairing 898 transfer for the gas chromatographic determination of phenolic endocrine disruptors, Anal. Chim. Acta 597 899 (2007) 32-40. otwiera się w nowej karcie
  50. P.-S. Chena, Y.-H. Tseng, Y.-L. Chuang, J.-H. Chen, Determination of volatile organic compounds in water using 901 headspace knotted hollow fiber microextraction, J. Chromatogr. A 1395 (2015) 41-47. otwiera się w nowej karcie
  51. M. Rezaee, Y. Assadi, M.R.M. Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, Determination of organic compounds 903 in water using dispersive liquid-liquid microextraction. J. Chromatogr. A 1116 (2006) 1 -9. otwiera się w nowej karcie
  52. P. Makoś, A. Fernandes, G. Boczkaj, Method for the determination of carboxylic acids in industrial effluents 905 using dispersive liquid-liquid microextraction with injection port derivatization gas chromatography-mass 906 spectrometry, J. Chromatogr. A 1517 (2017) 26-34. otwiera się w nowej karcie
  53. P. Makoś, A. Fernandes, A. Przyjazny, G. Boczkaj, Sample preparation procedure using extraction and 908 derivatization ofcarboxylic acids from aqueous samples by means of deep eutectic solvents for gas 909 chromatographic-mass spectrometric analysis, J. Chromatogr. A1555 (2018) 10-19. otwiera się w nowej karcie
  54. J. Sun, H. Tao, Determination of Phenols in Wastewater by Dispersive Liquid-Liquid Microextraction Coupled 911 to Capillary Gas Chromatography, International Conference on Chemical, Material and Food Engineering 912 (CMFE-2015).DOI: 10.2991/cmfe-15.2015.87. otwiera się w nowej karcie
  55. G. Song, C. Zhu, Y. Hu, J. Chen, H. Cheng, Determination of organic pollutants in coking wastewater by 914 dispersive liquid-liquid microextraction/GC/MS, J. Sep. Sci. 36 (2013) 1644-1651. otwiera się w nowej karcie
  56. J. Sun, F. Zeng, X. Liu, Determination of Acrylates in Wastewater by Dispersive Liquid-liquid Microextraction 916 Coupled to Capillary Gas Chromatography, Adv. Mat. Res. 881-883 (2014) 627-630. otwiera się w nowej karcie
  57. A. González, J. Avivar, V. Cerdà, Estrogens determination in wastewater samples by automatic in-syringe 918 dispersive liquid-liquid microextraction prior to silylation and gas chromatography. J. Chromatogr. A 1413 919 (2015) 1-8. otwiera się w nowej karcie
  58. 70. Y.-M. Liua, F.-P. Zhanga, B.-Y. Jiaoa, J.-Y. Raoa, G. Leng, Automated dispersive liquid-liquid microextraction 921 coupled to high performance liquid chromatography -cold vapour atomic fluorescence spectroscopy for the 922 determination of mercury species in natural water samples, J. Chromatogr. A 1493 (2017) 1-9. otwiera się w nowej karcie
  59. M. Alexovič, M. Wieczorek, J. Kozak, P. Kościelniak, I.S. Balogh, V. Andruch, An automatic, vigorous-injection 924 assisted dispersive liquid-liquid microextraction technique for stopped-flow spectrophotometric detection of 925 boron, Talanta 133 (2015) 127-133. otwiera się w nowej karcie
  60. B. Horstkottea, K. Fikarová, D. J. Cocovi-Solberg , H. Sklenářová, P. Solicha , M. Miró, Online coupling of fully 927 automatic in-syringe dispersive liquid-liquid microextraction with oxidative back-extraction to inductively 928 coupled plasma spectrometry for sample clean-up in elemental analysis: A proof of concept, Talanta 173 929 (2017) 79-87. otwiera się w nowej karcie
  61. F. Maya, B. Horstkotte, J. M. Estela, V. Cerdà, Automated in-syringe dispersive liquid-liquid microextraction, 931 otwiera się w nowej karcie
  62. TrAC 59 (2014) 1-8. otwiera się w nowej karcie
  63. L. Guo, S. Tana, X. Li, H.K. Lee, Fast automated dual-syringe based dispersive liquid-liquid microextraction 933 coupled with gas chromatography-mass spectrometry for the determination of polycyclic aromatic 934 hydrocarbons in environmental water samples, J. Chromatogr. A 1438 (2016) 1-9. otwiera się w nowej karcie
  64. S. Li, L. Hu, K. Chen, H. Gao, Extensible automated dispersive liquid-liquid microextraction, Anal. Chim. Acta 936 872 (2015) 46-54. otwiera się w nowej karcie
  65. O.O. Olujimi, O.S. Fatoki, J.P. Odendaal, A.P. Daso, Chemical monitoring and temporal variation in levels of 938 endocrine disrupting chemicals (priority phenols and phthalate esters) from selected wastewater treatment 939 plant and freshwater systems in Republic of South Africa, Microchem. J. 101 (2012) 11-23. otwiera się w nowej karcie
  66. O.O. Olujimi, O.S. Fatoki, J.P. Odendaal, Method development for simultaneous determination of phthalate 941 and eleven priority phenols as tert-butyldimethylsilyl derivatives in grab samples from wastewater treatment 942 plants using GC-MS in Cape Town, South Africa, Fresen. Environ. Bull. 20 (2011) 69-77. otwiera się w nowej karcie
  67. Q. Yang, P. Xiong, P. Ding, L. Chu, J. Wang, Treatment of petrochemical wastewater by microaerobic hydrolysis 944 and anoxic/oxic processes and analysis of bacterial diversity, Bioresour. Technol. 196 (2015) 169-175. otwiera się w nowej karcie
  68. G. Gatidou, N. S. Thomaidis, A.S. Stasinakis, T.D. Lekkas, Simultaneous determination of the endocrine 946 disrupting compounds nonylphenol, nonylphenol ethoxylates, triclosan and bisphenol A in wastewater and 947 sewage sludge by gas chromatography-mass spectrometry, J. Chromatogr. A 1138 (2007) 32-41. otwiera się w nowej karcie
  69. 80. N. Nakada, H. Nyunoya, M. Nakamura, A. Hara, T. Iguchi, H. Takada, Identification of estrogenic compounds in 949 wastewater effluent, Environ. Toxicol. Chem. 23 (2004) 2807-2815. otwiera się w nowej karcie
  70. A. Kovacs, A. Kende, M. Mortl, G. Volk, T. Rikker, K. Torkos, Determination of phenols and chlorophenols as 951 trimethylsilyl derivatives using gas chromatography-mass spectrometry, J. Chromatogr. A 1194 (2008) 139- otwiera się w nowej karcie
  71. J.A. Padilla-Sánchez, P. Plaza-Bolanos, R. Romero-González, N. Barco-Bonilla, J.L. Martínez-Vidal, A. Garrido- 954 otwiera się w nowej karcie
  72. Frenich, Simultaneous analysis of chlorophenols, alkylphenols, nitrophenols and cresols in wastewater 955 effluents, using solid phase extraction and further determination by gas chromatography-tandem mass 956 spectrometry, Talanta 85 (2011) 2397-2404.
  73. W.J. Zhong, D.H. Wang, X.W. Xu, B.Y. Wang, Q. Luo, S.S. Kumaran, Z.J. Wang, A gas chromatography/mass 958 spectrometry method for the simultaneous analysis of 50 phenols in wastewater using deconvolution 959 technology, Chinese Sci. Bull. 56 (2011) 275−284. otwiera się w nowej karcie
  74. Á. Sebok, A. Vasanits-Zsigrai, A. Helenkár, G. Záray, I. Molnár-Perl, Multiresidue analysis of pollutants as their 961 trimethylsilyl derivatives, by gas chromatography-mass spectrometry, J. Chromatogr. A 1216 (2009) 2288- 962 otwiera się w nowej karcie
  75. B. Jurado-Sánchez, E. Ballesteros, M. Gallego, Determination of carboxylic acids in water by gas 964 chromatography-mass spectrometry after continuous extraction and derivatisation, Talanta 93 (2012) 224- otwiera się w nowej karcie
  76. J. Meng, C. Shi, B. Wei, W. Yub, C. Deng, X. Zhang, Preparation of Fe3O4@C@PANI magnetic microspheres for 967 the extraction and analysis of phenolic compounds in water samples by gas chromatography-mass 968 spectrometry. J. Chromatogr. A 1218 (2011) 2841-2847. otwiera się w nowej karcie
  77. J.B. Quintana, R. Rodil, S. Muniategui-Lorenzo, P. Lopez-Mahıa, D. Prada-Rodrıguez, Multiresidue analysis of 970 acidic and polar organic contaminants in water samples by stir-bar sorptive extraction-liquid desorption-gas 971 chromatography-mass spectrometry, J. Chromatogr. A 1174 (2007) 27-39. otwiera się w nowej karcie
  78. L. Feng, Y. Huang, H. Wang, Solid-phase microextraction in combination with GC-FID for quantification of the 973 volatile free fatty acids in wastewater from constructed wetlands, J. Chromatogr. Sci. 46 (2008) 577-584. otwiera się w nowej karcie
  79. H. Piri-Moghadam, M.N. Alam, J. Pawliszyn, Review of geometries and coating materials in solid phase 975 microextraction: Opportunities, limitations, and future perspectives, Analytica Chimica Acta (2017), 976 otwiera się w nowej karcie
  80. http://dx.doi.org/10.1016/j.aca.2017.05.035. otwiera się w nowej karcie
  81. M. Abalos, J.M. Bayona, J. Pawliszyn, Development of a headspace solid-phase microextraction procedure for 978 the determination of free volatile fatty acids in waste waters, J. Chromatogr. A 873 (2000) 107-115. otwiera się w nowej karcie
  82. L. Pan, M. Adams, J. Pawliszyn, Determination of Fatty Acids Using Solid-Phase Microextraction, Anal. Chem. 980 67 (1995) 4396-4403. otwiera się w nowej karcie
  83. L. Pan, J. Pawliszyn, Derivatization/Solid-Phase Microextraction: New Approach to Polar Analytes, Anal. Chem. 982 69 (1997) 196-205. otwiera się w nowej karcie
  84. M. Ábalos, J.M. Bayona, Application of gas chromatography coupled to chemical ionisation mass spectrometry 984 following headspace solid-phase microextraction for the determination of free volatile fatty acids in aqueous 985 samples, J. Chromatogr. A 891 (2000) 287-294. otwiera się w nowej karcie
  85. M. Llompart, M. Lourido, P. Landın, C. Garcıa-Jares, R. Cela, Optimization of a derivatization-solid-phase 987 microextraction method for the analysis of thirty phenolic pollutants in water samples, J. Chromatogr. A 963 988 (2002) 137-148. otwiera się w nowej karcie
  86. P. Braun, M. Moeder, St. Schrader, P. Popp, P. Kuschk, W. Engewald, Trace analysis of technical nonylphenol, 990 bisphenol A and 17alpha-ethinylestradiol in wastewater using solid-phase microextraction and gas 991 chromatography-mass spectrometry, J. Chromatogr. A 988 (2003) 41-51. otwiera się w nowej karcie
  87. R. A. Trenholm, F.L. Rosario-Ortiz, S.A. Snyder, Analysis of formaldehyde formation in wastewater using on- 993 fiber derivatization-solid-phase microextraction-gas chromatography-mass spectrometry, J. Chromatogr. A 994 1210 (2008) 25-29. otwiera się w nowej karcie
  88. A. Godayol, M. Alonso, E. Besalú, J.M. Sanchez, E. Anticó, Odour-causing organic compounds in wastewater 996 treatment plants: Evaluation of headspace solid-phase microextraction as a concentration technique, J. otwiera się w nowej karcie
  89. Chromatogr. A 1218 (2011) 4863-4868. otwiera się w nowej karcie
  90. A. Banel, M. Wasielewska, B. Zygmunt, Application of headspace solid-phase microextraction followed by gas 999 chromatography-mass spectrometry to determine short-chain alkane monocarboxylic acids in aqueous 1000 samples, Anal Bioanal. Chem. 399 (2011) 3299-3303. otwiera się w nowej karcie
  91. S.-P. Yo, Analysis of volatile fatty acids in wastewater collected from a pig farm by a solid phase 1002 microextraction method, Chemosphere 38 (1999) 823-834. otwiera się w nowej karcie
  92. H. Liua, L. Ji, J.i Li, S. Liu, X. Liu, S. Jiang, Magnetron sputtering Si interlayer: A protocol to prepare solid phase 1004 microextraction coatings on metal-based fiber, J. Chromatogr. A 1218 (2011) 2835-2840. otwiera się w nowej karcie
  93. W. Du, F. Zhao, B. Zeng, Novel multiwalled carbon nanotubes-polyaniline composite film coated platinum 1006 wire for headspace solid-phase microextraction and gas chromatographic determination of phenolic 1007 compounds, J. Chromatogr. A 1216 (2009) 3751-3757. otwiera się w nowej karcie
  94. H. Liu, J. Li, X. Liu, S. Jiang, A novel multiwalled carbon nanotubes bonded fused-silica fiber for solid phase 1009 microextraction-gas chromatographic analysis of phenols in water samples. Talanta 78 (2009) 929-935. otwiera się w nowej karcie
  95. M. Wasielewska, A. Banel, B. Zygmunt, Solid Phase Micro-Extraction, a Versatile and Handy Tool in 1011 otwiera się w nowej karcie
  96. Environmental Trace Organic Analysis, Gets a New Class of Coatings, Polymeric Ionic Liquids, Int. J. Environ. otwiera się w nowej karcie
  97. Sci. Technol. 4 (2013) 221-224. otwiera się w nowej karcie
  98. F. Zhou, X. Li, Z. Zeng, Determination of phenolic compounds in wastewater samples using a novel fiber by 1014 solid-phase microextraction coupled to gas chromatography, Anal. Chim. Acta 538 (2005) 63-70. otwiera się w nowej karcie
  99. K.H. Schueller, C. Schillig, Extraction device, US patent application US20140220701 A1. otwiera się w nowej karcie
  100. D.E. Raynie, New Sample Preparation Products and Accessories for 2017. LCGC Europe, 30 (2017)298-305. 1017 107. J. Pawliszyn, Solid-Phase Microextraction: Theory and Practice, Wiley-VCH, New York (1997).
  101. L.T. McGrath, C.D. Weir, S. Maynard, B.J. Rowlands, Gas-liquid chromatographic analysis of volatile short chain 1019 fatty acids in fecal samples as pentafluorobenzyl esters, Anal. Biochem. 207 (1992) 227-230. otwiera się w nowej karcie
  102. H. Lin, J. Wang, L. Zeng, G. Li, Y. Sha, D. Wu, B. Liu, Development of solvent micro-extraction combined with 1023 derivatization, J. Chromatogr. A 1296 (2013) 235-242. otwiera się w nowej karcie
  103. E. Bizkarguenaga, A. Iparragirre, P. Navarro, M. Olivares, A. Prietoa, A. Vallejo, O. Zuloag, In-port derivatization 1025 after sorptive extractions, J. Chromatogr. A 1296 (2013) 36-46. otwiera się w nowej karcie
  104. C. F. Poole, Alkylsilyl derivatives for gas chromatography, J. Chromatogr. A 1296 (2013) 2-14. otwiera się w nowej karcie
  105. A. M. C.Ferreira, M. E.F. Laespada, J. L. P. Pavón, B. M. Cordero, In situ aqueous derivatization as sample 1028 preparation technique for gas chromatographic determinations, J. Chromatogr. A 1296 (2013) 70-83. otwiera się w nowej karcie
  106. C. F. Poole, Derivatization reactions for use with the electron-capture detector, J. Chromatogr. A 1296 (2013) 1030 15-24. otwiera się w nowej karcie
  107. L. Hing-Biu, T.E. Peart, J.M. Carron, Gas chromatographic and mass spectrometric determination of some resin 1032 and fatty acids in pulpmill effluents as their pentafluorobenzyl ester derivatives. J. Chromatogr. A 498 (1990) 1033 otwiera się w nowej karcie
  108. J. Wu, H. K. Lee, Injection Port Derivatization Following Ion-Pair Hollow Fiber-Protected Liquid-Phase 1035 otwiera się w nowej karcie
  109. Microextraction for Determining Acidic Herbicides by Gas Chromatography/Mass Spectrometry, Anal. Chem. 1036 78 (2006) 7292-7301. otwiera się w nowej karcie
  110. P. Husek, P. Simek, Alkyl chloroformates in sample derivatization strategies for GC analysis. Review on a 1038 decade use of the reagents as esterifying agents, Curr. Pharm. Anal. 2 (2006) 23-43. otwiera się w nowej karcie
  111. 118. R. Cervini, G. Day, A. Hibberd, G. Sharp, A. Froud, Investigation of a Novel, Sol-Gel Derived Stationary Phase for 1040 Gas Chromatography, LC GC Eur. 14 (2001) 564-569.
  112. L.M.L. Nollet, Chromatographic Analysis of the Environment, Third Edition, CRC Press, 2005. otwiera się w nowej karcie
  113. J. Beihoffer, C. Ferguson, Determination of Selected Carboxylic Acids and Alcohols in Groundwater by GC- 1045 otwiera się w nowej karcie
  114. MS, J. Chromatogr. Sci. 32 (1994) 102-106. otwiera się w nowej karcie
  115. E. Senturk, M. Ince, O.G. Engin, Treatment efficiency and VFA composition of a thermophilic anaerobic contact 1047 reactor treating food industry wastewater, J. Hazard. Mater. 176 (2010) 843-848.
  116. D.W. Lou, X. Lee, J. Pawliszyn, Extraction of formic and acetic acids from aqueous solution by dynamic 1049 headspace-needle trap extraction Temperature and pH optimization, J. Chromatogr. A 1201 (2008) 228-234. otwiera się w nowej karcie
  117. E. Alkaya, S. Kaptan, L. Ozkan, S. Uludag-Demirer, G.N. Demirer, Recovery of acids from anaerobic acidification 1051 broth by liquid-liquid extraction, Chemosphere 77 (2009) 1137-1142. otwiera się w nowej karcie
  118. A. Banel, A. Jakimska, M. Wasielewska, L. Wolska, B. Zygmunt, Determination of SCFAs in water using GC-FID. 1053 Selection of the separation system, Anal. Chim. Acta 716 (2012) 24-27. otwiera się w nowej karcie
  119. M.C. Pietrogrande, D. Bacco, M. Mercuriali, GC-MS analysis of low-molecular-weight dicarboxylic acids in 1055 atmospheric aerosol: comparison between silylation and esterification derivatization procedures, Anal. otwiera się w nowej karcie
  120. Bioanal. Chem. 396 (2010) 877-885. otwiera się w nowej karcie
  121. 128. R.P. Eganhouse, J. Pontolillo, R. B. Gaines, G. S. Frysinger, F.L. P. Gabriel, H.-P. E. Kohler, W. Giger, L. B. Barber, 1058 otwiera się w nowej karcie
  122. Isomer-Specific Determination of 4-Nonylphenols Using Comprehensive Two-Dimensional Gas 1059 otwiera się w nowej karcie
  123. Chromatography/Time-of-Flight Mass Spectrometry, Environ. Sci. Technol. 43 (2009) 9306-9313. otwiera się w nowej karcie
  124. C. Zhang, R.P. Eganhouse, J. Pontolillo, I. M. Cozzarelli, Y.Wang, Determination of nonylphenol isomers in 1061 landfill leachate and municipal wastewater using steam distillation extraction coupled with comprehensive 1062 two-dimensional gas chromatography/time-of-flight mass spectrometry, J. Chromatogr. A 1230 (2012) 110- otwiera się w nowej karcie
  125. C.F. Poole, N. Lenca, Gas chromatography on wall-coated open-tubular columns with ionic liquid stationary 1065 phases, J. Chromatogr. A 1357 (2014) 87-109. otwiera się w nowej karcie
  126. C. Ragonese, D. Sciarronea, P. Q. Tranchida, P. Dugo, L. Mondello, Use of ionic liquids as stationary phases in 1067 hyphenated gas chromatography techniques, J. Chromatogr. A 1255 (2012) 130-144. otwiera się w nowej karcie
  127. L. Vidal, M.-L. Riekkola, A. Canals, Ionic liquid-modified materials for solid-phase extraction and separation: A 1069 review, Anal. Chim. Acta 715 (2012) 19-41. otwiera się w nowej karcie
  128. G. Boczkaj, A. Przyjazny, M. Kamiński, New procedures for control of industrial effluents treatment 1071 processes, Ind. Eng.Chem. Res. 53 (2014) 1503-1514. otwiera się w nowej karcie
  129. C. M. Hussain, C. Saridara, S. Mitra, Self-Assembly of Carbon Nanotubes via Ethanol Chemical Vapor 1073 otwiera się w nowej karcie
  130. Deposition for the Synthesis of Gas Chromatography Columns, Anal. Chem. 82 (2010) 5184-5188. otwiera się w nowej karcie
  131. A. V. Herrera-Herrera, M. Á. González-Curbelo, J. Hernández-Borges, M. Ángel Rodríguez-Delgado, Carbon 1075 nanotubes applications in separation science: A review, Anal. Chim. Acta 734 (2012) 1-30. otwiera się w nowej karcie
  132. D. Merli, A. Speltini, D. Ravelli, E. Quartaronec, L. Costa, A. Profumo, Multi-walled carbon nanotubes as the gas 1077 chromatographic stationary phase: Role of their functionalization in the analysis of aliphatic alcohols and 1078 esters, J. Chromatogr. A 1217 (2010) 7275-7281. otwiera się w nowej karcie
  133. G. R. Verga, A. Sironi, W. Schneider, J. Ch. Frohne; Selective determination of oxygenates in complex samples 1080 with the O-FID analyzer. J. High Resol. Chromatogr., 11 (1998) 248. otwiera się w nowej karcie
  134. ASTM D 5599: Standard Test Method for Determination of Oxygenates in Gasoline by Gas Chromatography 1082 and Oxygen Selective Flame Ionization Detection. otwiera się w nowej karcie
  135. 139. Polish Standard PN-EN 1601:2001: Liquid petroleum products, unleaded gasoline -Determination of 1084 oxygenated organic compounds and total organic oxygen content by gas chromatography (O-FID). otwiera się w nowej karcie
  136. 140. R. Bro, PARAFAC. Tutorial and applications. Chemometr Intell. Lab. 38 (1997) 149-171. otwiera się w nowej karcie
  137. 141. R. Tauler, Multivariate curve resolution applied to second order data, Chemometr Intell. Lab. 30 (1995) 133- 1087 146. otwiera się w nowej karcie
  138. M.M. Galera, M.D.G. Garcıa, H.C. Goicoechea, The application to wastewaters of chemometric approaches to 1089 handling problems of highly complex matrices, TrAC 26 (2007) 1032-1042. otwiera się w nowej karcie
  139. M. Shahpar, S. Esmaeilpoor, Advanced QSRR Modeling of Organic Pollutants in Natural Water and Wastewater 1091 in Gas Chromatography Time-of-Flight Mass Spectrometry, Chem. Method. 2 (2018) 1-22. otwiera się w nowej karcie
  140. K.A. Schug, I. Sawicki, D.D. Carlton Jr, H. Fan, H.M. McNair, J.P. Nimmo, P. Kroll, J. Smuts, P. Walsh, D. Harrison, 1093 Vacuum ultraviolet detector for gas chromatography, Anal. Chem. 86 (2014) 8329-8335. otwiera się w nowej karcie
  141. I.C. Santos, K.A. Schug, Recent advances and applications of gas chromatography vacuum ultraviolet 1095 spectroscopy. J. Sep. Sci. 40 (2017) 138-151. otwiera się w nowej karcie
  142. B. Gruber, T. Groeger, D. Harrison, R. Zimmermann, Vacuum ultraviolet absorption spectroscopy in 1097 combination with comprehensive two-dimensional gas chromatography for the monitoring of volatile organic 1098 compounds in breath gas: a feasibility study, J. Chromatogr. A 1464 (2016) 141-146. otwiera się w nowej karcie
  143. H. Fan, J. Smuts, L. Bai, P. Walsh, D.W. Armstrong, K.A. Schug, Gas chromatography-vacuum ultraviolet 1100 spectroscopy for analysis of fatty acid methyl esters, Food Chem. 194 (2016) 265-271. otwiera się w nowej karcie
  144. B.M. Weber, P. Walsh, J.J. Harynuk, Determination of hydrocarbon group-type of diesel fuels by gas 1102 chromatography with vacuum ultraviolet detection, Anal. Chem. 88 (2016) 5809-5817. otwiera się w nowej karcie
  145. H. Fan, J. Smuts, P. Walsh, D. Harrison, K.A. Schug, Gas chromatography-vacuum ultraviolet spectroscopy for 1104 multiclass pesticide identification, J. Chromatogr. A 1389 (2015) 120-127. otwiera się w nowej karcie
  146. C. Qiu, J. Cochran, J. Smuts, P. Walsh, K. A. Schug, Gas chromatography-vacuum ultraviolet detection for 1106 classification and speciation of polychlorinated biphenyls in industrial mixtures, J. Chromatogr. A 1490 (2017) 1107 otwiera się w nowej karcie
  147. L. Skultety, P. Frycak, C. Qiu, J. Smuts, L. Shear-Laude, K. Lemr, J. X. Mao, P. Kroll, K.A. Schug, A. Szewczak, 1109 otwiera się w nowej karcie
  148. C.Vaught, I. Lurie, V. Havlicek, Resolution of isomeric new designer stimulants using gas chromatography - 1110 Vacuum ultraviolet spectroscopy and theoretical computations, Anal. Chim. Acta 971 (2017) 55-67.
  149. M.S. Zhang, A.M. Wang, Determination of trace phenol in water with bromide derivatization and gas 1112 chromatography. Chinese J. Anal. Chem. 27 (1999) 63-65.
  150. 153. US Environmental Protection Agency, Determination of carbonyl compounds in drinking water by 1114 pentafluorobenzylhydroxylamine derivatization and capillary gas chromatography with electron capture 1115 detection, Office of Research and Development, US EPA, Method 556, 1998. otwiera się w nowej karcie
  151. W.H. Steinecker, K. Miecznikowski, P. J. Kulesza, Z. D. Sandlinc , J.A. Cox, Amperometric detector for gas 1117 chromatography based on a silica sol-gel solid electrolyte, Talanta 174 (2017) 1-6. otwiera się w nowej karcie
  152. J.S. Brown, S.M. Bay, D. J. Greenstein, W. R. Ray, Concentrations of Methyl-Tert-Butyl Ether (MTBE) in Inputs 1119 and Receiving Waters of Southern California, Mar. Pollut. Bull. 42 (2001) 957-966. otwiera się w nowej karcie
  153. M Castillo, D Barceló, Characterization of organic pollutants in industrial effluents by high-temperature gas 1121 chromatography-mass spectrometry, TrAC 18 (1999) 26-36. otwiera się w nowej karcie
  154. T. Reemtsma, A. Putschew, M. Jekel, Industrial wastewater analysis: a toxicity-directed approach, Waste 1123 Manag. 19 (1999) 181-188. otwiera się w nowej karcie
  155. C. Achten, A. Kolb, W. Puttmann, Methyl tert-Butyl Ether (MTBE) in River and Wastewater in Germany.
  156. Environ. Sci. Technol. 36 (2002) 3652-3661. otwiera się w nowej karcie
  157. G. Boczkaj, A. Fernandes, Wastewater treatment by means of Advanced Oxidation Processes at basic pH 1127 conditions: A review, Chem. Eng. J. 320 (2017) 608-633. otwiera się w nowej karcie
  158. M. Gagol, A. Przyjazny, G. Boczkaj, Wastewater treatment by means of advanced oxidation processes based 1129 on cavitation -a review, Chem. Eng. J. 338 (2018) 599-627. otwiera się w nowej karcie
  159. C.B. Oman, C. Junestedt, Chemical characterization of landfill leachates -400 parameters and compounds.
  160. Waste Manage. 28 (2008) 1876-1891. otwiera się w nowej karcie
  161. T. Yamamoto, A. Yasuhara, H. Shiraishi, O. Nakasugi, Bisphenol A in hazardous waste landfill leachates. otwiera się w nowej karcie
  162. Chemosphere, 42 (2001) 415-418. otwiera się w nowej karcie
  163. A. Yasuhara, H. Shiraishi, M. Nishikawa, T. Yamamoto, O. Nakasugi, T. Okumura, K. Kenmotsu, H. Fukui, M. Na 1135 gas, Y. Kawagoshi, Organic components in leachates from hazardous waste disposal sites.Waste Manage. otwiera się w nowej karcie
  164. Res., 17 (1999) 186-197. otwiera się w nowej karcie
  165. E.M. Siedlecka, J. Kumirska, T. Ossowski, P. Glamowski, M. Gołębiowski, J. Gajdus, Z. Kaczyński, P. Stepnowski, 1138
  166. Determination of Volatile Fatty Acids in Environmental Aqueous Samples. Pol. J. Environ. Stud. 17 (2008) 351- otwiera się w nowej karcie
  167. A.M. Sulej-Suchomska, Ż. Polkowska, Z. J. Kokot, M. de la Guardia, J. Namieśnik, Determination of antifreeze 1141 substances in the airport runoff waters by solid-phase microextraction and gas chromatography-mass 1142 spectrometry method. Microchem. J. 126 (2016) 466-473. otwiera się w nowej karcie
  168. F. Delfino, D. Dube. Persistent contamination of ground water by phenol. J. Environ. Sci. Health. 43 (1976) 1144 otwiera się w nowej karcie
  169. L. Mandaric, M. Celic, R. Marcé, M. Petrovic Introduction on Emerging Contaminants in Rivers and Their 1146 otwiera się w nowej karcie
  170. Environmental Risk. In: Petrovic M., Sabater S., Elosegi A., Barceló D. (eds) Emerging Contaminants in River 1147 otwiera się w nowej karcie
  171. Ecosystems. The Handbook of Environmental Chemistry, 2005. Springer, Cham. otwiera się w nowej karcie
  172. J. Michałowicz, W. Duda, Phenols -Sources and Toxicity. Polish J. of Environ. Stud. 16 (2007) 347-362. otwiera się w nowej karcie
  173. K. Ito, Y. Takayama, M. Ikedo, M. Mori, H. Taoda, Q. Xu, W. Hu, H. Sunahara, T. Hayashi, S. Sato, T. Hirokawa, 1150 otwiera się w nowej karcie
  174. K. Tanaka, Determination of some aliphatic carboxylic acids in anaerobic digestion process waters by ion- 1151 exclusion chromatography with conductimetric detection on a weakly acidic cation-exchange resin column. J. 1152
  175. Chromatogr. A, 1039 (2004) 141-145. otwiera się w nowej karcie
  176. G. Boczkaj, M. Momotko, D. Chruszczyk, A. Przyjazny, M. Kamiński, Novel stationary phases based on 1154 asphaltenes for gas chromatography, J. Sep. Sci. 39 (2016) 2527-2536. 1155 1156 1157 1158 1159 1160 1161 1162 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 229 razy

Publikacje, które mogą cię zainteresować

Meta Tagi