MicroGal Gravity Measurements with MGS-6 Micro-g LaCoste Gravimeter - Publikacja - MOST Wiedzy


MicroGal Gravity Measurements with MGS-6 Micro-g LaCoste Gravimeter


Knowing the exact number of fruit and trees helps growers to make better decisions about how to manage their production in the orchard and prevent plant diseases. The current practice of yield estimation is to manually count fruit or flowers (before harvesting), which is a very time-consuming and costly process. Moreover it’s not practical for large orchards. It also doesn’t allow to make predictions of plant development in a more precise way and thus, to take appropriate preventive measures with regard to plant protection or stimulation of plant development, as well as to react correctly in business terms knowing the approximate potential of an orchard before its actual harvest. Thanks to the changes that have occurred in recent years in the field of image analysis methods and computational efficiency, it is possible to create solutions for automatic fruit counting on the recorded digital image. In our work we’ve proposed the architecture of the system for counting apples (fruit in orchards) which is based on methods related to: determining the position of the camera, obtaining the image, image analysis / counting objects in the image and making data available to the fruit grower. The research compared results from three image analysis methods that can be used to count apple trees. The proposed scheme is based on the use of smartphones equipped with a camera with the required image acquisition accuracy and accurate GNSS positioning.


  • 1


  • 1

    Web of Science

  • 1


Informacje szczegółowe

Publikacja w czasopiśmie
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
SENSORS nr 19, strony 1 - 10,
ISSN: 1424-8220
Rok wydania:
Opis bibliograficzny:
Przyborski M., Pyrchla J., Pyrchla K., Szulwic J.: MicroGal Gravity Measurements with MGS-6 Micro-g LaCoste Gravimeter// SENSORS. -Vol. 19, iss. 11 (2019), s.1-10
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/s19112592
Bibliografia: test
  1. Ågren, J.; Schwabe, J.; Strykowski, G.; Forsberg, R.; Liebsch, G.; Foerste, C.; Barthelmes, F.; Bilker-Koivula, M.; Ellmann, A.; Märdla, S. Overview of the FAMOS efforts to improve the Baltic Sea geoid model by new marine gravity measurements. In Proceedings of the Joint Scientific Assembly of the International Association of Geodesy (IAG) and International Association of Seismology and Physics of the Earth's Interior (IASPEI), Kobe, Japan, 30 July-4 August 2017.
  2. Li, X. Strapdown INS/DGPS airborne gravimetry tests in the Gulf of Mexico. J. Geod. 2011, 85, 597. otwiera się w nowej karcie
  3. Li, X.; Jekeli, C. Ground-vehicle INS/GPS vector gravimetry. Geophysics 2008, 73, I1-I10. otwiera się w nowej karcie
  4. Warburton, R.J.; Pillai, H.; Reineman, R.C. Initial results with the new GWR iGrav superconducting gravity meter. In Proceedings of the Extended Abstract Presented at 2nd Asia Workshop on Superconducting Gravimetry, Taipei, Taiwan, 20-22 June 2010.
  5. Thompson, L.G.D.; LaCoste, L.J.B. Aerial gravity measurements. J. Geophys. Res. 1960, 65, 305-322. otwiera się w nowej karcie
  6. LaCoste, L.J.B. Measurement of gravity at sea and in the air. Rev. Geophys. 1967, 5, 477-526. otwiera się w nowej karcie
  7. Dehlinger, P. Marine Gravity; Elsevier Science: Amsterdam, The Netherlands, 1978. otwiera się w nowej karcie
  8. Kim, Y.; Lee, S.; Okino, K.; Koizumi, K. Gravity Anomaly across the Yap Trench, Sorol Trough, and Southernmost Parece Vela Basin and Its Implications for the Flexural Deformation of the Lithosphere and Regional Isostasy; American Geophysical Union: Washington, DC, USA, 2005.
  9. Jin, S.; Barzaghi, R. (Eds.) IGFS 2014: Proceedings of the 3rd International Gravity Field Service (IGFS), Shanghai, China, 30 June-6 July 2014; Springer: Berlin/Heidelberg, Germany, 2017; Volume 144. otwiera się w nowej karcie
  10. Smoller, Y.; Yurist, S.; Fedorova, I.; Bolotin, Y.; Golovan, A.; Koneshov, V.; Hewison, W.; Richter, T.; Greenbaum, J.; Young, D.; et al. Using airborne gravimeter GT2A in polar areas. In Proceedings of the TG-SMM 2013-IAG Symposium on Terrestrial Gravimetry: Static and Mobile Measurements, St. Petersburg, Russia, 17-20 September 2013; pp. 36-40.
  11. Lacoste, L.J.B. Crosscorrelation method for evaluating and correcting shipboard gravity data. Geophysics 1973, 38, 701-709. otwiera się w nowej karcie
  12. LaCoste, L.J.B. LaCoste and Romberg straight-line gravity meter. Geophysics 1983, 48, 606-610. otwiera się w nowej karcie
  13. Lacoste, L.; Clarkson, N.; Hamilton, G. Lacoste and Romberg Stabilized Platform Shipboard Gravity Meter. Geophysics 1967, 32, 99-109. otwiera się w nowej karcie
  14. Choi, I.M.; Lee, K.C.; Lee, S.; Kim, D.; Lee, H.Y. Gravity Measurement for the KRISS Watt Balance. IEEE Trans. Instrum. Meas. 2017, 66, 1317-1322. otwiera się w nowej karcie
  15. Amalvict, M.; Hinderer, J.; Boy, J.P.; Gegout, P. A Three Year Comparison Between a Superconducting Gravimeter (GWR C026) and an Absolute Gravimeter (FG5#206) in Strasbourg (France). J. Geod. Soc. Jpn. 2001, 47, 334-340.
  16. Francis, O.; Niebauer, T.M.; Sasagawa, G.; Klopping, F.; Gschwind, J. Calibration of a superconducting gravimeter by comparison with an absolute gravimeter FG5 in Boulder. Geophys. Res. Lett. 1998, 25, 1075-1078. otwiera się w nowej karcie
  17. Boy, J.P.; Hinderer, J. Study of the seasonal gravity signal in superconducting gravimeter data. J. Geodyn. 2006, 41, 227-233. otwiera się w nowej karcie
  18. Krynski, J. Gravity field modelling and gravimetry. Geod. Cartogr. 2015, 64, 177-200. otwiera się w nowej karcie
  19. Fores, B.; Champollion, C.; Moigne, N.L.; Bayer, R.; Chery, J. Assessing the precision of the iGrav superconducting gravimeter for hydrological models and karstic hydrological process identification. Geophys. J. Int. 2016, 208, 269-280. otwiera się w nowej karcie
  20. Adushkin, V.V.; Riabova, S.A.; Spivak, A.A. Lunar-solar tide effects in the Earth's crust and atmosphere. Izv. Phys. Solid Earth 2017, 53, 565-580. otwiera się w nowej karcie
  21. Bogusz, J. Environmental Influences on Gravimetric Earth Tides Observations. Artif. Satell. 2007, 42, 41-57. otwiera się w nowej karcie
  22. Adushkin, V.V.; Spivak, A.A.; Kharlamov, V.A. Effects of lunar-solar tides in the variations of geophysical fields at the boundary between the Earth's crust and the atmosphere. Izv. Phys. Solid Earth 2012, 48, 104-116. otwiera się w nowej karcie
  23. Prothero, W.A.; Goodkind, J.M. A superconducting gravimeter. Rev. Sci. Instrum. 1968, 39, 1257-1262. otwiera się w nowej karcie
  24. Gustafsson, F. Determining the initial states in forward-backward filtering. IEEE Trans. Signal Process. 1996, 44, 988-992. otwiera się w nowej karcie
  25. Iwano, S.; Fukuda, Y. Superconducting gravimeter observations without a tilt compensation system. Phys. Earth Planet. Inter. 2004, 147, 343-351. otwiera się w nowej karcie
  26. Andò, B.; Carbone, D. A methodology for reducing the effect of meteorological parameters on a continuously recording gravity meter. IEEE Trans. Instrum. Meas. 2001, 50, 1248-1254.
  27. Rosat, S.; Boy, J.P.; Ferhat, G.; Hinderer, J.; Amalvict, M.; Gegout, P.; Luck, B. Analysis of a 10-year (1997-2007) record of time-varying gravity in Strasbourg using absolute and superconducting gravimeters: New results on the calibration and comparison with GPS height changes and hydrology. J. Geodyn. 2009, 48, 360-365. otwiera się w nowej karcie
  28. Van Ruymbeke, M. A calibration system for gravimeters using a sinusoidal acceleration resulting from a vertical periodic movement. Bull. Géodésique 1989, 63, 223-236. c 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Źródła finansowania:
Politechnika Gdańska

wyświetlono 55 razy

Publikacje, które mogą cię zainteresować

Meta Tagi