Microwave-assisted synthesis of a TiO2-CuO heterojunction with enhanced photocatalytic activity against tetracycline - Publikacja - MOST Wiedzy


Microwave-assisted synthesis of a TiO2-CuO heterojunction with enhanced photocatalytic activity against tetracycline


A microwave method was used for the synthesis of TiO2-CuO oxide systems. A detailed investigation was made of the effect of the molar ratio of components (TiO2:CuO=9:1, 7:3, 5:5, 3:7, 1:9) on the crystalline structure and morphology. Transmission electron microscopy (TEM) confirmed the presence of octahedral and rod-shaped titania particles and sheet copper(II) oxide particles; moreover, HRTEM analysis indicated the presence of a heterojunction between TiO2 and CuO. The synthesized materials were analyzed by X-ray diffraction (XRD) and Raman spectroscopy, and two crystalline forms (anatase and monoclinic CuO) were detected. The key element of the work was to determine the photocatalytic activity of the obtained binary oxide systems in the degradation of tetracycline. Photo-oxidation tests proved that the binary oxide materials (especially the (9)TiO2-(1)CuO and (7)TiO2-(3)CuO samples) demonstrate high photocatalytic activity in the decomposition of tetracycline (95% after 90 min irradiation) compared with the reference titania samples. Furthermore, a Z-scheme heterojunction photocatalytic process mechanism was proposed. Another important part of the work was the determination of tetracycline photodegradation products using the HPLC/MS technique


  • 7 1


  • 6 1

    Web of Science

  • 7 0


Autorzy (10)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 195 razy
Wersja publikacji
Accepted albo Published Version
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Publikacja w czasopiśmie
artykuły w czasopismach
Opublikowano w:
ISSN: 0169-4332
Rok wydania:
Opis bibliograficzny:
Kubiak A., Bielan Z., Kubacka M., Gabała E., Zgoła-Grześkowiak A., Janczarek M., Zalas M., Zielińska-Jurek A., Siwińska-Ciesielczyk K., Jesionowski T.: Microwave-assisted synthesis of a TiO2-CuO heterojunction with enhanced photocatalytic activity against tetracycline// APPLIED SURFACE SCIENCE -,iss. 520 (2020), s.1-15
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.apsusc.2020.146344
Bibliografia: test
  1. M. Lilenberg, S. Yurchenko, K. Kipper, K. Herodes, V. Pihl, K. Sepp, R. Lohmus, L. Nei, Simultaneous determination of fluoroquinolones, sulfonamides and tetra- cyclines in sewage sludge by pressurized liquid extraction and liquid chromato- graphy electrospray ionization-mass spectrometry, J. Chromatogr. A. 1216 (2009) 5949-5954, https://doi.org/10.1016/j.chroma.2009.06.029. otwiera się w nowej karcie
  2. S. Fekadu, E. Alemayehu, R. Dewil, B. Van der Bruggen, Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge, Sci. Total Environ. 654 (2019) 324-337, https://doi.org/10.1016/j. scitotenv.2018.11.072. otwiera się w nowej karcie
  3. J. Lyu, Z. Hu, Z. Li, M. Ge, Removal of tetracycline by BiOBr microspheres with oxygen vacancies: Combination of adsorption and photocatalysis, J. Phys. Chem. Solids. 129 (2019) 61-70, https://doi.org/10.1016/j.jpcs.2018.12.041. otwiera się w nowej karcie
  4. J. Martín, M.D. Camacho-Muñoz, J.L. Santos, I. Aparicio, E. Alonso, Distribution and temporal evolution of pharmaceutically active compounds alongside sewage sludge treatment. Risk assessment of sludge application onto soils, J. Environ. Manage. 102 (2012) 18-25, https://doi.org/10.1016/j.jenvman.2012.02.020. otwiera się w nowej karcie
  5. L. Pasquini, J.F. Munoz, M.N. Pons, J. Yvon, X. Dauchy, X. France, N.D. Le, C. France-Lanord, T. Görner, Occurrence of eight household micropollutants in urban wastewater and their fate in a wastewater treatment plant, Statistical Evaluation, Sci. Total Environ. 481 (2014) 459-468, https://doi.org/10.1016/j. scitotenv.2014.02.075. otwiera się w nowej karcie
  6. T. Deblonde, C. Cossu-Leguille, P. Hartemann, Emerging pollutants in wastewater: A review of the literature, Int. J. Hyg. Environ. Health. 214 (2011) 442-448, https://doi.org/10.1016/j.ijheh.2011.08.002. otwiera się w nowej karcie
  7. H.B. Quesada, A.T.A. Baptista, L.F. Cusioli, D. Seibert, C. de Oliveira Bezerra, R. Bergamasco, Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review, Chemosphere 222 (2019) 766-780, https://doi.org/10.1016/j.chemosphere.2019.02.009. otwiera się w nowej karcie
  8. W. Peysson, E. Vulliet, Determination of 136 pharmaceuticals and hormones in sewage sludge using quick, easy, cheap, effective, rugged and safe extraction fol- lowed by analysis with liquid chromatography-time-of-flight-mass spectrometry, J. Chromatogr. A. 1290 (2013) 46-61, https://doi.org/10.1016/j.chroma.2013.03. 057. otwiera się w nowej karcie
  9. J.L. Liu, M.H. Wong, Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China, Environ. Int. 59 (2013) 208-224, https://doi.org/10.1016/j.envint.2013.06.012. otwiera się w nowej karcie
  10. M. Topal, E.I. Arslan Topal, Investigation of tetracycline and degradation products in Euphrates river receiving outflows of trout farms, Aquac. Res. 47 (2016) 3837-3844, https://doi.org/10.1111/are.12834. otwiera się w nowej karcie
  11. Y. Zhang, S. Zuo, M. Zhou, L. Liang, G. Ren, Removal of tetracycline by coupling of flow-through electro-Fenton and in-situ regenerative active carbon felt adsorption, Chem. Eng. J. 335 (2018) 685-692, https://doi.org/10.1016/j.cej.2017.11.012. otwiera się w nowej karcie
  12. J. Yu, J. Kiwi, I. Zivkovic, H.M. Rønnow, T. Wang, S. Rtimi, Quantification of the local magnetized nanotube domains accelerating the photocatalytic removal of the emerging pollutant tetracycline, Appl. Catal. B Environ. 248 (2019) 450-458, https://doi.org/10.1016/j.apcatb.2019.02.046. otwiera się w nowej karcie
  13. G.M. Islam, K.A. Gilbride, The effect of tetracycline on the structure of the bacterial community in a wastewater treatment system and its effects on nitrogen removal, J. Hazard. Mater. 371 (2019) 130-137, https://doi.org/10.1016/j.jhazmat.2019.02. 032. otwiera się w nowej karcie
  14. J.D. Toth, Y. Feng, Z. Dou, Veterinary antibiotics at environmentally relevant concentrations inhibit soil iron reduction and nitrification, Soil Biol. Biochem. 43 (2011) 2470-2472, https://doi.org/10.1016/j.soilbio.2011.09.004. otwiera się w nowej karcie
  15. H. Zhang, P. Liu, Y. Feng, F. Yang, Fate of antibiotics during wastewater treatment and antibiotic distribution in the effluent-receiving waters of the Yellow Sea, northern China, Mar. Pollut. Bull. 73 (2013) 282-290, https://doi.org/10.1016/j. marpolbul.2013.05.007. otwiera się w nowej karcie
  16. P. Guerra, M. Kim, A. Shah, M. Alaee, S.A. Smyth, Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treat- ment processes, Sci. Total Environ. 473-474 (2014) 235-243, https://doi.org/10. 1016/j.scitotenv.2013.12.008. otwiera się w nowej karcie
  17. K.G. Karthikeyan, M.T. Meyer, Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA, Sci. Total Environ. 361 (2006) 196-207, https://doi. org/10.1016/j.scitotenv.2005.06.030. otwiera się w nowej karcie
  18. J. Cao, Z. Xiong, B. Lai, Effect of initial pH on the tetracycline (TC) removal by zero- valent iron: Adsorption, oxidation and reduction, Chem. Eng. J. 343 (2018) 492-499, https://doi.org/10.1016/j.cej.2018.03.036. otwiera się w nowej karcie
  19. M. Janczarek, M. Endo, D. Zhang, K. Wang, E. Kowalska, Enhanced photocatalytic A. Kubiak, et al. Applied Surface Science 520 (2020) 146344
  20. and antimicrobial performance of cuprous oxide/titania: the effect of titania matrix, Materials 11 (2018) 2069, https://doi.org/10.3390/ma11112069. otwiera się w nowej karcie
  21. M. Janczarek, E. Kowalska, On the origin of enhanced photocatalytic activity of copper-modified titania in the oxidative reaction systems, Catalysts 7 (2017) 317, https://doi.org/10.3390/catal7110317. otwiera się w nowej karcie
  22. C. McCullagh, J.M.C. Robertson, D.W. Bahnemann, P.K.J. Robertson, The applica- tion of TiO 2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: A review, Res. Chem. Intermed. 33 (2007) 359-375, https://doi. org/10.1163/156856707779238775. otwiera się w nowej karcie
  23. B. Roose, S. Pathak, U. Steiner, Doping of TiO 2 for sensitized solar cells, Chem. Soc. Rev. 44 (2015) 8326-8349, https://doi.org/10.1039/c5cs00352k. otwiera się w nowej karcie
  24. I.P. Parkin, R.G. Palgrave, Self-cleaning coatings, J. Mater. Chem. 15 (2005) 1689-1695, https://doi.org/10.1039/b412803f. otwiera się w nowej karcie
  25. H. Wu, Y. Yang, H. Suo, M. Qing, L. Yan, B. Wu, J. Xu, H. Xiang, Y. Li, Effects of ZrO 2 promoter on physic-chemical properties and activity of Co/TiO 2 -SiO 2 Fischer- Tropsch catalysts, J. Mol. Catal. A Chem. 396 (2014) 108-119, https://doi.org/10. 1016/j.molcata.2014.09.024. otwiera się w nowej karcie
  26. B. Ohtani, Titania photocatalysis beyond recombination: A critical review, Catalysts 3 (2013) 942-953, https://doi.org/10.3390/catal3040942. otwiera się w nowej karcie
  27. M. Fujishima, H. Takatori, H. Tada, Interfacial chemical bonding effect on the photocatalytic activity of TiO 2 -SiO 2 nanocoupling systems, J. Colloid Interface Sci. 361 (2011) 628-631, https://doi.org/10.1016/j.jcis.2011.06.024. otwiera się w nowej karcie
  28. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269-271, https://doi.org/10. 1126/science.1061051. otwiera się w nowej karcie
  29. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B 125 (2012) 331-349, https://doi. org/10.1016/j.apcatb.2012.05.036. otwiera się w nowej karcie
  30. F. Yang, X. Zhang, Y. Yang, S. Hao, L. Cui, Characteristics and supercapacitive performance of nanoporous bamboo leaf-like CuO, Chem. Phys. Lett. 691 (2018) 366-372, https://doi.org/10.1016/j.cplett.2017.11.047. otwiera się w nowej karcie
  31. K. Zhang, Q. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, CuO na- nostructures: Synthesis, characterization, growth mechanisms, fundamental prop- erties, and applications, Prog. Mater. Sci. 60 (2014) 208-237, https://doi.org/10. 1016/j.pmatsci.2013.09.003. otwiera się w nowej karcie
  32. S.S. Lee, H. Bai, Z. Liu, D.D. Sun, Novel-structured electrospun TiO 2 /CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater, Water Res. 47 (2013) 4059-4073, https://doi.org/10.1016/j. watres.2012.12.044. otwiera się w nowej karcie
  33. S.S. Lee, H. Bai, Z. Liu, D.D. Sun, Optimization and an insightful properties-activity study of electrospun TiO 2 /CuO composite nanofibers for efficient photocatalytic H 2 generation, Appl. Catal. B Environ. 140-141 (2013) 68-81, https://doi.org/10. 1016/j.apcatb.2013.03.033. otwiera się w nowej karcie
  34. P. Wang, X. Wen, R. Amal, Y.H. Ng, Introducing a protective interlayer of TiO 2 in Cu 2 O-CuO heterojunction thin film as a highly stable visible light photocathode, RSC Adv. 5 (2015) 5231-5236, https://doi.org/10.1039/c4ra13464h. otwiera się w nowej karcie
  35. J. Bandara, C.P.K. Udawatta, C.S.K. Rajapakse, Highly stable CuO incorporated TiO 2 catalyst for photocatalytic hydrogen production from H 2 O, Photochem. Photobiol. Sci. 4 (2005) 857-861, https://doi.org/10.1039/b507816d. otwiera się w nowej karcie
  36. S. Qin, F. Xin, Y. Liu, X. Yin, W. Ma, Photocatalytic reduction of CO 2 in methanol to methyl formate over CuO-TiO 2 composite catalysts, J. Colloid Interface Sci. 356 (2011) 257-261, https://doi.org/10.1016/j.jcis.2010.12.034. otwiera się w nowej karcie
  37. J.F. de Brito, M.V.B. Zanoni, On the application of Ti/TiO 2 /CuO n-p junction semiconductor: A case study of electrolyte, temperature and potential influence on CO 2 reduction, Chem. Eng. J. 318 (2017) 264-271, https://doi.org/10.1016/j.cej. 2016.08.033. otwiera się w nowej karcie
  38. A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD, World J. Nano Sci. Eng. 02 (2012) 154-160, https://doi.org/10.4236/wjnse.2012.23020. otwiera się w nowej karcie
  39. A. Khorsand Zak, W.H. Abd Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods, Solid State Sci. 13 (2011) 251-256, https://doi.org/10.1016/j.solidstatesciences.2010.11.024. otwiera się w nowej karcie
  40. M.I. Dar, A.K. Chandiran, M. Grätzel, M.K. Nazeeruddin, S.A. Shivashankar, Controlled synthesis of TiO 2 nanoparticles and nanospheres using a microwave assisted approach for their application in dye-sensitized solar cells, J. Mater. Chem. A. 2 (2014) 1662-1667, https://doi.org/10.1039/c3ta14130f. otwiera się w nowej karcie
  41. A.B. Corradi, F. Bondioli, B. Focher, A.M. Ferrari, C. Grippo, E. Mariani, C. Villa, Conventional and microwave-hydrothermal synthesis of TiO 2 nanopowders, J. Am. Ceram. Soc. 88 (2005) 2639-2641, https://doi.org/10.1111/j.1551-2916.2005. 00474.x. otwiera się w nowej karcie
  42. G.S. Falk, M. Borlaf, M.J. López-Muñoz, J.C. Fariñas, J.B. Rodrigues Neto, R. Moreno, Microwave-assisted synthesis of TiO 2 nanoparticles: photocatalytic ac- tivity of powders and thin films, J. Nanoparticle Res. 20 (2018) 23, https://doi.org/ 10.1007/s11051-018-4140-7. otwiera się w nowej karcie
  43. X. Wang, J. Tian, C. Fei, L. Lv, Y. Wang, G. Cao, Rapid construction of TiO 2 ag- gregates using microwave assisted synthesis and its application for dye-sensitized solar cells, RSC Adv. 5 (2014) 8622-8629, https://doi.org/10.1039/c4ra11266k. otwiera się w nowej karcie
  44. D.P. Volanti, D. Keyson, L.S. Cavalcante, A.Z. Simões, M.R. Joya, E. Longo, J.A. Varela, P.S. Pizani, A.G. Souza, Synthesis and characterization of CuO flower- nanostructure processing by a domestic hydrothermal microwave, J. Alloys Compd. 459 (2008) 537-542, https://doi.org/10.1016/j.jallcom.2007.05.023. otwiera się w nowej karcie
  45. C. Yang, F. Xiao, J. Wang, X. Su, 3D flower-and 2D sheet-like CuO nanostructures: Microwave-assisted synthesis and application in gas sensors, Sens Actuators, B Chem. 207 (2015) 177-185, https://doi.org/10.1016/j.snb.2014.10.063. otwiera się w nowej karcie
  46. G. Qiu, S. Dharmarathna, Y. Zhang, N. Opembe, H. Huang, S.L. Suib, Facile mi- crowave-assisted hydrothermal synthesis of CuO nanomaterials and their catalytic and electrochemical properties, J. Phys. Chem. C. 116 (2012) 468-477, https://doi. org/10.1021/jp209911k. otwiera się w nowej karcie
  47. M.C. Mathpal, A.K. Tripathi, M.K. Singh, S.P. Gairola, S.N. Pandey, A. Agarwal, Effect of annealing temperature on Raman spectra of TiO 2 nanoparticles, Chem. Phys. Lett. 555 (2012) 182-186, https://doi.org/10.1016/j.cplett.2012.10.082. otwiera się w nowej karcie
  48. K. Phiwdang, S. Suphankij, W. Mekprasart, W. Pecharapa, Synthesis of CuO nano- particles by precipitation method using different precursors, Energy Proc. 34 (2013) 740-745, https://doi.org/10.1016/j.egypro.2013.06.808. otwiera się w nowej karcie
  49. L. Zhu, M. Hong, G. Wei, Fabrication of wheat grain textured TiO 2 /CuO composite nano fibers for enhanced solar H 2 generation and degradation performance, Nano Energy 11 (2015) 28-37, https://doi.org/10.1016/j.nanoen.2014.09.032. otwiera się w nowej karcie
  50. Q. Shi, G. Ping, X. Wang, H. Xu, J. Li, J. Cui, H. Abroshan, H. Ding, G. Li, CuO/TiO 2 heterojunction composites: An efficient photocatalyst for selective oxidation of methanol to methyl formate, J. Mater. Chem. A. 7 (2019) 2253-2260, https://doi. org/10.1039/c8ta09439j. otwiera się w nowej karcie
  51. G. Nagaraju, T. Ramakrishnappa, J.D. Scholten, K. Manjunath, J. Dupont, V.S. Souza, Heterojunction CuO-TiO 2 nanocomposite synthesis for significant photocatalytic hydrogen production, Mater. Res. Express. 3 (2016) 115904, , https://doi.org/10.1088/2053-1591/3/11/115904. otwiera się w nowej karcie
  52. E.P. Etape, L.J. Ngolui, J. Fobatendo, D.M. Yufanyi, B.V. Namondo, Synthesis and characterization of CuO, TiO 2 , and CuO-TiO 2 mixed oxide by a modified oxalate route, J. Appl. Chem. 2017 (2017) 4518654, https://doi.org/10.1155/2017/ 4518654. otwiera się w nowej karcie
  53. A.M. Cahino, R.G. Loureiro, J. Dantas, V.S. Madeira, P.C. Ribeiro Fernandes, Characterization and evaluation of ZnO/CuO catalyst in the degradation of me- thylene blue using solar radiation, Ceram. Inter. 45 (2019) 13628-13636, https:// doi.org/10.1063/1.4945505. otwiera się w nowej karcie
  54. J. Yu, X. Zhao, Q. Zhao, G. Wang, Preparation and characterization of super-hy- drophilic porous TiO 2 coating films, Mater. Chem. Phys. 68 (2001) 253-259, https://doi.org/10.1016/S0254-0584(00)00364-3. otwiera się w nowej karcie
  55. S. Rahim, M.S. Ghamsari, S. Radiman, Surface modification of titanium oxide na- nocrystals with PEG, Sci. Iran. 19 (2012) 948-953, https://doi.org/10.1016/j. scient.2012.03.009. otwiera się w nowej karcie
  56. M.S. Kim, S.H. Chung, C.J. Yoo, M.S. Lee, I.H. Cho, D.W. Lee, K.Y. Lee, Catalytic reduction of nitrate in water over Pd-Cu/TiO 2 catalyst: Effect of the strong metal- support interaction (SMSI) on the catalytic activity, Appl. Catal. B Environ. 142-143 (2013) 354-361, https://doi.org/10.1016/j.apcatb.2013.05.033. otwiera się w nowej karcie
  57. J.O. Olowoyo, M. Kumar, T. Dash, S. Saran, S. Bhandari, U. Kumar, Self-organized copper impregnation and doping in TiO2 with enhanced photocatalytic conversion of H 2 O and CO 2 to fuel, Int. J. Hydrogen Energy. 43 (2018) 19468-19480, https:// doi.org/10.1016/j.ijhydene.2018.08.209. otwiera się w nowej karcie
  58. A.A. Dubale, C.J. Pan, A.G. Tamirat, H.M. Chen, W.N. Su, C.H. Chen, J. Rick, D.W. Ayele, B.A. Aragaw, J.F. Lee, Y.W. Yang, B.J. Hwang, Heterostructured Cu 2 O/ CuO decorated with nickel as a highly efficient photocathode for photoelec- trochemical water reduction, J. Mater. Chem. A. 3 (2015) 12482-12499, https:// doi.org/10.1039/c5ta01961c. otwiera się w nowej karcie
  59. R. Van Grieken, J. Aguado, M.J. López-Muoz, J. Marugán, Synthesis of size-con- trolled silica-supported TiO 2 photocatalysts, J. Photochem. Photobiol. A Chem. 148 (2002) 315-322, https://doi.org/10.1016/S1010-6030(02)00058-8. otwiera się w nowej karcie
  60. K. Zhou, R. Wang, B. Xu, Y. Li, Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes, Nanotechnology. 17 (2006) 3939-3943, https://doi.org/10.1088/0957-4484/17/15/055. otwiera się w nowej karcie
  61. L. Zhu, M. Hong, G.W. Ho, Fabrication of wheat grain textured TiO 2 /CuO composite nanofibers for enhanced solar H 2 generation and degradation performance, Nano Energy 11 (2015) 28-37, https://doi.org/10.1016/j.nanoen.2014.09.032. otwiera się w nowej karcie
  62. P. Rezaei, M. Rezaei, F. Meshkani, Ultrasound-assisted hydrothermal method for the preparation of the M-Fe 2 O 3 -CuO (M: Mn, Ag, Co) mixed oxides nanocatalysts for low-temperature CO oxidation, Ultrason.-Sonochem. 57 (2019) 212-222, https:// doi.org/10.1016/j.ultsonch.2019.04.042. otwiera się w nowej karcie
  63. S. Bhuvaneshwari, N. Gopalakrishnan, Hydrothermally synthesized copper oxide (CuO) superstructures for ammonia sensing, J. Colloid Interface Sci. 480 (2016) 76-84, https://doi.org/10.1016/j.jcis.2016.07.004. otwiera się w nowej karcie
  64. S.R. Son, K.S. Go, S.D. Kim, Thermogravimetric analysis of copper oxide for che- mical-looping hydrogen generation, Ind. Eng. Chem. Res. 48 (2009) 380-387, https://doi.org/10.1021/ie800174c. otwiera się w nowej karcie
  65. D.A. Svintsitskiy, A.P. Chupakhin, E.M. Slavinskaya, O.A. Stonkus, A.I. Stadnichenko, S.V. Koscheev, A.I. Boronin, Study of cupric oxide nanopowders as efficient catalysts for low-temperature CO oxidation, J. Mol. Catal. A Chem. 368-369 (2013) 95-106, https://doi.org/10.1016/j.molcata.2012.11.015. otwiera się w nowej karcie
  66. N. Tamaekong, C. Liewhiran, S. Phanichphant, Synthesis of thermally spherical CuO nanoparticles, J. Nanomater. 2014 (2014) 1-5, https://doi.org/10.1155/2014/ 507978. otwiera się w nowej karcie
  67. H. Wang, F. Shadman, Effect of particle size on the adsorption and desorption properties of oxide nanoparticles, AIChE J. 59 (2012) 1502-1510, https://doi.org/ 10.1002/aic.13936. otwiera się w nowej karcie
  68. H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic perfor- mances, Chem. Soc. Rev. 43 (2014) 5234-5244, https://doi.org/10.1039/ c4cs00126e. otwiera się w nowej karcie
  69. W.K. Jo, T.S. Natarajan, Influence of TiO 2 morphology on the photocatalytic effi- ciency of direct Z-scheme g-C 3 N 4 /TiO 2 photocatalysts for isoniazid degradation, Chem. Eng. J. 281 (2015) 549-565, https://doi.org/10.1016/j.cej.2015.06.120. otwiera się w nowej karcie
  70. S. Hariganesh, S. Vadivel, D. Maruthamani, M. Kumaravel, B. Paul, N. Balasubramanian, T. Vijayaraghavan, Facile large scale synthesis of CuCr 2 O 4 / CuO nanocomposite using MOF route for photocatalytic degradation of methylene blue and tetracycline under visible light, Appl. Organomet. Chem. 34 (2020) e5365, , https://doi.org/10.1002/aoc.5365. otwiera się w nowej karcie
  71. L. Clarizia, D. Spasiano, I. Di Somma, R. Marotta, R. Andreozzi, D.D. Dionysiou, Copper modified-TiO 2 catalysts for hydrogen generation through photoreforming of organics. A short review, Int. J. Hydrogen Energy. 39 (2014) 16812-16831, https:// doi.org/10.1016/j.ijhydene.2014.08.037. otwiera się w nowej karcie
  72. J. Yu, Y. Hai, M. Jaroniec, Photocatalytic hydrogen production over CuO-modified titania, J. Colloid Interface Sci. 357 (2011) 223-228, https://doi.org/10.1016/j. jcis.2011.01.101. otwiera się w nowej karcie
  73. A. Kubiak, K. Siwińska-Ciesielczyk, J. Goscianska, A. Dobrowolska, E. Gabała, K. Czaczyk, T. Jesionowski, Hydrothermal-assisted synthesis of highly crystalline titania-copper oxide binary systems with enhanced antibacterial properties, Mater. Sci. Eng. C. 104 (2019), https://doi.org/10.1016/j.msec.2019.109839. otwiera się w nowej karcie
  74. P. Wang, P.S. Yap, T.T. Lim, C-N-S tridoped TiO 2 for photocatalytic degradation of tetracycline under visible-light irradiation, Appl. Catal. A Gen. 399 (2011) 252-261, https://doi.org/10.1016/j.apcata.2011.04.008. otwiera się w nowej karcie
  75. M. Ahmadi, H. Ramezani Motlagh, N. Jaafarzadeh, A. Mostoufi, R. Saeedi, G. Barzegar, S. Jorfi, Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO 2 nano-composite, J. Environ. Manage. 186 (2017) 55-63, https://doi.org/10.1016/j.jenvman.2016.09.088. otwiera się w nowej karcie
  76. X.D. Zhu, Y.J. Wang, R.J. Sun, D.M. Zhou, Photocatalytic degradation of tetra- cycline in aqueous solution by nanosized TiO 2 , Chemosphere 92 (2013) 925-932, https://doi.org/10.1016/j.chemosphere.2013.02.066. otwiera się w nowej karcie
  77. Y. Shi, Z. Yang, B. Wang, H. An, Z. Chen, H. Cui, Adsorption and photocatalytic degradation of tetracycline hydrochloride using a palygorskite-supported Cu 2 O- TiO 2 composite, Appl. Clay Sci. 119 (2016) 311-320, https://doi.org/10.1016/j. clay.2015.10.033. otwiera się w nowej karcie
  78. R.A. Palominos, M.A. Mondaca, A. Giraldo, G. Peñuela, M. Pérez-Moya, H.D. Mansilla, Photocatalytic oxidation of the antibiotic tetracycline on TiO 2 and ZnO suspensions, Catal. Today. 144 (2009) 100-105, https://doi.org/10.1016/j. cattod.2008.12.031. otwiera się w nowej karcie
  79. G. Zhang, W. Guan, H. Shen, X. Zhang, W. Fan, C. Lu, H. Bai, L. Xiao, W. Gu, W. Shi, Organic additives-free hydrothermal synthesis and visible-light-driven photo- degradation of tetracycline of WO 3 nanosheets, Ind. Eng. Chem. Res. 53 (2014) 5443-5450, https://doi.org/10.1021/ie4036687. otwiera się w nowej karcie
  80. W. Li, H. Ding, H. Ji, W. Dai, J. Guo, G. Du, Photocatalytic degradation of tetra- cycline hydrochloride via a CdS-TiO 2 heterostructure composite under visible light irradiation, Nanomaterials 8 (2018) 415, https://doi.org/10.3390/nano8060415. otwiera się w nowej karcie
  81. F. Chen, Q. Yang, J. Sun, F. Yao, S. Wang, Y. Wang, X. Wang, X. Li, C. Niu, D. Wang, G. Zeng, Enhanced photocatalytic degradation of tetracycline by AgI/BiVO 4 het- erojunction under visible-light irradiation: mineralization efficiency and me- chanism, ACS Appl. Mater. Interfaces 8 (2016) 32887-32900, https://doi.org/10. 1021/acsami.6b12278. otwiera się w nowej karcie
  82. L. Wang, C. Zhang, R. Cheng, J. Ali, Z. Wang, G. Mailhot, G. Pan, Microcystis aeruginosa synergistically facilitate the photocatalytic degradation of tetracycline hydrochloride and Cr(VI) on PAN/TiO 2 /Ag nanofiber mats, Catalysts 8 (2018) 628, https://doi.org/10.3390/catal8120628. otwiera się w nowej karcie
  83. S.J.A. Moniz, J. Tang, Charge transfer and photocatalytic activity in CuO/TiO 2 nanoparticle heterojunctions synthesised through a rapid, one-pot, microwave solvothermal route, ChemCatChem 7 (2015) 1659-1667, https://doi.org/10.1002/ cctc.201500315. otwiera się w nowej karcie
  84. M. Buchalska, M. Kobielusz, A. Matuszek, M. Pacia, S. Wojtyła, W. Macyk, On oxygen activation at rutile-and anatase-TiO 2 , ACS Catal. 5 (2015) 7424-7431, https://doi.org/10.1021/acscatal.5b01562. otwiera się w nowej karcie
  85. W.R. Siah, H.O. Lintang, M. Shamsuddin, H. Yoshida, L. Yuliati, Masking effect of copper oxides photodeposited on titanium dioxide: Exploring UV, visible, and solar light activity, Catal. Sci. Technol. 6 (2016) 5079-5087, https://doi.org/10.1039/ c6cy00074f. otwiera się w nowej karcie
  86. B. Ohtani, Photocatalysis A to Z-What we know and what we do not know in a scientific sense, J. Photochem. Photobiol. C Photochem. Rev. 11 (2010) 157-178, https://doi.org/10.1016/j.jphotochemrev.2011.02.001. otwiera się w nowej karcie
  87. F. Amano, O.O. Prieto-Mahaney, Y. Terada, T. Yasumoto, T. Shibayama, B. Ohtani, Decahedral single-crystalline particles of anatase titanium(IV) oxide with high photocatalytic activity, Chem. Mater. 21 (2009) 2601-2603, https://doi.org/10. 1021/cm9004344. otwiera się w nowej karcie
  88. S.W. Verbruggen, TiO 2 photocatalysis for the degradation of pollutants in gas phase: From morphological design to plasmonic enhancement, J. Photochem. Photobiol. C Photochem. Rev. 24 (2015) 64-82, https://doi.org/10.1016/j.jphotochemrev. 2015.07.001. otwiera się w nowej karcie
  89. Z.W. Kunlei Wang, M. Janczarek, Z. Wei, T. Raja-Mogan, M. Endo-Kimura, T.M. Khedr, B. Ohtani, E. Kowalska, Morphology-and crystalline composition- governed activity of titania-based photocatalysts: overview and perspective, Catalysts 1054 (2019), https://doi.org/10.3390/catal9121054. otwiera się w nowej karcie
  90. O. Ola, M.M. Maroto-Valer, Review of material design and reactor engineering on TiO 2 photocatalysis for CO 2 reduction, J. Photochem. Photobiol. C Photochem. Rev. 24 (2015) 16-42, https://doi.org/10.1016/j.jphotochemrev.2015.06.001. otwiera się w nowej karcie
  91. M. Rokhmat, E. Wibowo, Khairurrijal Sutisna, M. Abdullah, Performance im- provement of TiO 2 /CuO solar cell by growing copper particle using fix current electroplating method, Proc. Eng. 170 (2017) 72-77, https://doi.org/10.1016/j. proeng.2017.03.014. otwiera się w nowej karcie
  92. A.L. Luna, M.A. Valenzuela, C. Colbeau-Justin, P. Vázquez, J.L. Rodriguez, J.R. Avendaño, S. Alfaro, S. Tirado, A. Garduño, J.M. De La Rosa, Photocatalytic degradation of gallic acid over CuO-TiO 2 composites under UV/Vis LEDs irradia- tion, Appl. Catal. A Gen. 521 (2016) 140-148, https://doi.org/10.1016/j.apcata. 2015.10.044. otwiera się w nowej karcie
  93. S. Chu, X. Zheng, F. Kong, G. Wu, L. Luo, Y. Guo, H. Liu, Y. Wang, H. Yu, Z. Zou, Architecture of Cu 2 O@TiO 2 core-shell heterojunction and photodegradation for 4- nitrophenol under simulated sunlight irradiation, Mater. Chem. Phys. 129 (2011) 1184-1188, https://doi.org/10.1016/j.matchemphys.2011.06.004. otwiera się w nowej karcie
  94. F.Y. Chen, X. Zhang, Y. Bin Tang, X.G. Wang, K.K. Shu, Facile and rapid synthesis of a novel spindle-like heterojunction BiVO4 showing enhanced visible-light-driven photoactivity, RSC Adv. 10 (2020) 5234-5240. doi: 10.1039/c9ra07891f. otwiera się w nowej karcie
  95. G. Mano, S. Harinee, S. Sridhar, M. Ashok, A. Viswanathan, Microwave assisted synthesis of ZnO-PbS heterojuction for degradation of organic pollutants under visible light, Sci. Rep. 10 (2020) 1-14, https://doi.org/10.1038/s41598-020- 59066-4. otwiera się w nowej karcie
  96. M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications, J. Alloys Compd. 494 (2010) 175-189, https://doi.org/10.1016/j.jallcom.2010.01.068. otwiera się w nowej karcie
  97. B.A. Roberts, C.R. Strauss, Toward rapid, "green", predictable microwave-assisted synthesis, Acc. Chem. Res. 38 (2005) 653-661, https://doi.org/10.1021/ ar040278m. otwiera się w nowej karcie
  98. S. Li, J. Hu, Photolytic and photocatalytic degradation of tetracycline: Effect of humic acid on degradation kinetics and mechanisms, J. Hazard. Mater. 318 (2016) 134-144, https://doi.org/10.1016/j.jhazmat.2016.05.100. otwiera się w nowej karcie
  99. Y. Deng, L. Tang, G. Zeng, J. Wang, Y. Zhou, J. Wang, J. Tang, L. Wang, C. Feng, Facile fabrication of mediator-free Z-scheme photocatalyst of phosphorous-doped ultrathin graphitic carbon nitride nanosheets and bismuth vanadate composites with enhanced tetracycline degradation under visible light, J. Colloid Interface Sci. 509 (2018) 219-234, https://doi.org/10.1016/j.jcis.2017.09.016. otwiera się w nowej karcie
  100. A. Kubiak, et al. Applied Surface Science 520 (2020) 146344 otwiera się w nowej karcie
Politechnika Gdańska

wyświetlono 110 razy

Publikacje, które mogą cię zainteresować

Meta Tagi