Minimum order of graphs with given coloring parameters - Publikacja - MOST Wiedzy

Wyszukiwarka

Minimum order of graphs with given coloring parameters

Abstrakt

A complete k-coloring of a graph G=(V,E) is an assignment F: V -> {1,...,k} of colors to the vertices such that no two vertices of the same color are adjacent, and the union of any two color classes contains at least one edge. Three extensively investigated graph invariants related to complete colorings are the minimum and maximum number of colors in a complete coloring (chromatic number χ(G) and achromatic number ψ(G), respectively), and the Grundy number Γ(G) defined as the largest k admitting a complete coloring &varphi with exactly k colors such that every vertex v∈V of color F(v) has a neighbor of color i for all 1 <= i < F(v). The inequality chain χ(G) <= Γ(G) <= ψ(G) obviously holds for all graphs G. A triple (f,g,h) of positive integers at least 2 is called realizable if there exists a connected graph G with χ(G) = f, Γ(G) = g, and ψ(G) = h. Chartrand et al. (A note on graphs with prescribed complete coloring numbers, J. Combin. Math. Combin. Comput. LXXIII (2010) 77-84) found the list of realizable triples. In this paper we determine the minimum number of vertices in a connected graph with chromatic number f, Grundy number g, and achromatic number h, for all realizable triples (f,g,h) of integers. Furthermore, for f = g = 3 we describe the (two) extremal graphs for each h >= 6. For h = 4 and h = 5, there are more extremal graphs, their description is contained as well.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Autorzy (4)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
DISCRETE MATHEMATICS nr 338, wydanie 4, strony 621 - 632,
ISSN: 0012-365X
Język:
angielski
Rok wydania:
2015
Opis bibliograficzny:
Bacsó G., Borowiecki P., Hujter M., Tuza Z.: Minimum order of graphs with given coloring parameters// DISCRETE MATHEMATICS. -Vol. 338, iss. 4 (2015), s.621-632
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.disc.2014.12.002
Weryfikacja:
Politechnika Gdańska

wyświetlono 156 razy

Publikacje, które mogą cię zainteresować

Meta Tagi