Modal analysis of railway current collectors using Autodesk Inventor - Publikacja - MOST Wiedzy

Wyszukiwarka

Modal analysis of railway current collectors using Autodesk Inventor

Abstrakt

The paper presents the results of modal analysis of railway current collector type 160EC. In the first place, the analysis was carried out analytically for a simplified two lumped mass pantograph model. Then numerical analysis was conducted in the Autodesk Inventor (AI) on the prepared multibody model using the AI modal analysis algorithm, which is based on the finite element method (FEM). Model elements which are most relevant for attaining a correct representation of vibration properties when using AI modal analysis were indicated. The influence of selected parameters of modal analysis algorithm on results accuracy was investigated, e.g. the FEM mesh density. The natural frequencies and shapes of the first few vibration modes are shown. The results indicate that the frequencies of natural vibrations of the moving pantograph components are within the range of up to tens of hertzs. The possible use of results of pantograph modal analysis at the design stage and in the operation phase was also discussed.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
materiały konferencyjne indeksowane w Web of Science
Opublikowano w:
MATEC Web of Conferences nr 180, strony 1 - 6,
ISSN: 2261-236X
Tytuł wydania:
13th International Conference Modern Electrified Transport (MET) strony 1 - 6
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Wilk A., Judek S., Karwowski K., Mizan M., Kaczmarek P..: Modal analysis of railway current collectors using Autodesk Inventor, W: 13th International Conference Modern Electrified Transport (MET), 2018, ,.
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1051/matecconf/201818004004
Bibliografia: test
  1. J. Jiang, Z. Liu, and X. Lu, Optimization of the pantograph parameters based on matching performance between pantograph parameters and dropper interval, Proceedings of the 35th Chinese Control Conference, 9742-9747 (2016) otwiera się w nowej karcie
  2. J.-P. Massat, C. Laurent, J.-P. Bianchi, and E. Balmès, Pantograph catenary dynamic optimisation based on advanced multibody and finite element co- simulation tools, Vehicle System Dynamics, 52, 338-354 (2014) otwiera się w nowej karcie
  3. T.X. Wu, and M.J. Brennan, Active vibration control of a railway pantograph, Proc. Inst. Mech. Eng. Part F: Journal of Rail Rapid Transit, 211, 117-130 (1997) otwiera się w nowej karcie
  4. T.X. Wu, and M.J. Brennan, Basic Analytical Study of Pantograph-catenary System Dynamics, Vehicle System Dynamics, 30, 443-456 (1998) otwiera się w nowej karcie
  5. J. Ambrósio, F. Rauter, J. Pombo, and M.S. Pereira, A Flexible Multibody Pantograph Model for the Analysis of the Catenary-Pantograph Contact, in: K. Arczewski, W. Blajer, J. Fraczek, M. Wojtyra, (Eds.), Multibody Dynamics: Computational Methods and Applications. Springer Netherlands, Dordrecht, 1-27 (2011) otwiera się w nowej karcie
  6. J.P. Bianchi, E. Balmès, G.V. des Roches, and A. Bobillot, Using modal damping for full model transient analysis. Application to pantograph/ catenary vibration, Proc. of the Int. Conf. on Adv. Acoustics and Vibration Eng. ISMA 2010, Leuven Belgium, 1167-1180 (2010)
  7. C. Zhao, N. Zhou, H. Zou, R. Li, R., and W. Zhang, Comparison of dynamic characteristics of different pantograph models, Proceedings of the 35th Chinese Control Conference, 10216-10221 (2016) otwiera się w nowej karcie
  8. N. Zhou, W. Zhang, and R. Li, Dynamic performance of a pantograph-catenary system with the consideration of the appearance characteristics of contact surfaces, Journal of Zhejiang University- SCIENCE A, 12, 913-920 (2011) otwiera się w nowej karcie
  9. AUTODESK Inventor, http://www.autodesk.pl/ products/inventor/overview otwiera się w nowej karcie
  10. A. Wilk, K. Karwowski, S. Judek, and M. Mizan, A new approach to determination of the two-mass model parameters of railway current collector, 12th otwiera się w nowej karcie
  11. Int. Conf. Modern Electrified Transport MET'2015, Trogir, Croatia, 164-170 (2015).
  12. S. Judek, and L. Jarzebowicz, Wavelet Transform- Based Approach to Defect Identification in Railway Carbon Contact Strips, Elektronika Ir Elektrotechnika, 21 (6), 29-33 (2015) otwiera się w nowej karcie
  13. Karwowski, K., Mizan, M., Karkosiński, D., Monitoring of current collectors on the railway line, Transport, 33, 177-185 (2018) otwiera się w nowej karcie
  14. P. Lengvarský, and J. Bocko, Theoretical Basis of Modal Analysis, Am. J. Mech. Eng., 1 (7), 173-179 (2013) otwiera się w nowej karcie
  15. G. Santamato, M. Solazzi, and A. Frisoli, A Detection Method of Faults in Railway Pantographs Based on Dynamic Phase Plots, World Acad. Sci. Eng. Technol. Int. J. of Mech. and Mechatr. Eng., 10 (8), 1474-1485 (2016) otwiera się w nowej karcie
  16. Commission Regulation (EU) No 1301/2014 of 18 November 2014 on the technical specifications for interoperability relating to the 'energy' subsystem of the rail system in the Union (2104) otwiera się w nowej karcie
  17. EN 50318, Railway applications. Current collection systems. Validation of simulation of the dynamic interaction between pantograph and overhead contact line (2003) otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 51 razy

Publikacje, które mogą cię zainteresować

Meta Tagi