Modelling the time-dependent behaviour of soft soils - Publikacja - MOST Wiedzy

Wyszukiwarka

Modelling the time-dependent behaviour of soft soils

Abstrakt

Time-dependence of soft soils has already been thoroughly investigated. The knowledge on creep and relaxation phenomena is generally available in the literature. However, it is still rarely applied in practice. Regarding the organic soils, geotechnical engineers mostly base their calculations on the simple assumptions. Yet, as presented within this paper, the rate-dependent behaviour of soft soils is a very special and important feature. It influences both, the strength and the stiffness, of a soil depending on time. It is, thus, significant to account for time-dependence in the geotechnical design when considering the soft soils. This can result in a more robust and economic design of geotechnical structures. Hence, the up-to-date possibilities of regarding creep in practice, which are provided by the existing theories, are reviewed herein. In this paper, we first justify the importance of creep effects in practical applications. Next, we present the fundamental theories explaining the time-dependent behaviour of organic soils. Finally, the revision of the existing constitutive models, which can be used in numerical simulations involving the soft soils, is introduced. Both, the models implemented in the commercial geotechnical software and some more advanced models, which take into account further aspects of soft soils behaviour, are revised. The assumptions, the basic equations along with the advantages and the drawbacks of the considered models are described.

Cytowania

  • 2

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 97 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Studia Geotechnica et Mechanica nr 42, strony 97 - 110,
ISSN: 0137-6365
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Staszewska K., Cudny M.: Modelling the time-dependent behaviour of soft soils// Studia Geotechnica et Mechanica -Vol. 42,iss. 2 (2019), s.97-110
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.2478/sgem-2019-0034
Bibliografia: test
  1. den Haan, E.J., Feddema, A. (2013). Deformation and strength of embankments on soft Dutch soil. Geotechnical Engineering, 166, 239-252. otwiera się w nowej karcie
  2. Havel, F. (2004). Creep in soft soils. Ph.D. Dissertation. Norwegian University of Science and Technology, Trondheim.
  3. Akagi, H., Saitoh, J. (1994). Dilatancy characteristics of clayey soil under principal axes rotation. In: Proceedings of the International Symposium on Pre-failure Deformation Characteristics of Geomaterials 1994, Sapporo.
  4. Akagi, H., Yamamoto, H. (1997). Stress-dilatancy relation of undisturbed clay under principal axes rotation. In: Deformation and Progressive Failure in Geomechanics. Edited by A. Asaoka, T. Adachi, F. Oka. Pergamon, 211-216. otwiera się w nowej karcie
  5. Vermeer, P.A., Leoni, M. (2005). Creep in soft soils. In: W(H) YDOC 2005, Paris.
  6. Liingaard, M., Augustesen, A., Lade, P.V. (2004). Characterization of models for time-dependent behavior of soils. International Journal of Geomechanics, 4, 157-177. otwiera się w nowej karcie
  7. Adachi, T., Oka, F., Mimura, M. (1996). Modeling aspects associated with time dependent behavior of soils, Measuring and modeling time dependent soil behavior. In: Geotechnical Special Publication No. 61. Edited by T.C. Sheahan and V.N. Kaliakin. ASCE, New York, 61-95.
  8. Briaud, J.L., Gibbens, R.M. (1994). Test and prediction results for five large spread footings on sand. In: Proceedings of Spread Footing Prediction Symposium 1994, College Station. otwiera się w nowej karcie
  9. Ladd, C.C., Foott, R., Ishihara, K., Schlosser, F., Poulos, H.G. (1977). Stress deformation and strength characteristics. In: Proceedings of the 9th ICSMFE 1977, Tokyo.
  10. Degago, S.A. (2014). Primary consolidation and creep of clays. In: The 2nd CREEP Workshop (CREBS IV) 2014, Delft.
  11. Mesri, G., Kane, T. (2017). Reassessment of isotaches compression concept and isotaches consolidation models. Journal of Geotechnical and Geoenvironmental Engineering, 14, 04017119. otwiera się w nowej karcie
  12. Buisman, K. (1936). Result of long duration settlement tests. In: Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering 1936, Delft. otwiera się w nowej karcie
  13. Bjerrum, L. (1967). Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings. Géotechnique, 17, 83-118. otwiera się w nowej karcie
  14. Garlanger, J.E. (1972). The consolidation of soils exhibiting creep under constant effective stress. Géotechnique, 22, 71-78. otwiera się w nowej karcie
  15. Mesri, G., Godlewski, P.M. (1977). Time-and stress-compressibility interrelationship. Journal of the Geotechnical Engineering Division, 103, 417-430. otwiera się w nowej karcie
  16. Cudny, M., Vermeer, P.A. (2003). On the modelling of anisotropy and destructuration of soft clays within the multi- laminate framework. Computers and Geotechnics, 31, 1-22. otwiera się w nowej karcie
  17. den Haan, E.J. (1994). Stress-independent parameter for primary and secondary compression. In: Proceedings of the 13th International Conference on Soil Mechanics and Foundation Engineering 1994, New Delhi.
  18. Šuklje, L. (1957). The analysis of the consolidation process by the isotaches method. In: Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering 1957, London.
  19. Mitchell, J.K., Soga, K. (2005). Fundamentals of Soil Behavior. Third Edition. John Wiley & Sons, Hoboken.
  20. Feda, J. (1992). Creep of soils and related phenomena. Developments in geotechnical engineering, vol. 68. Elsevier Science. otwiera się w nowej karcie
  21. Cosenza, P., Korošak, D. (2014). Secondary consolidation of clay as an anomalous diffusion process. International Journal for Numerical and Analytical Methods in Geomechanics, 38, 1231-1246. otwiera się w nowej karcie
  22. Navarro, A., Alonso, E.E. (2001). Secondary compression of clays as a local dehydration process. Géotechnique, 51, 859-869. otwiera się w nowej karcie
  23. Roscoe, K.H., Burland, J.B. (1968). On the generalised stress- strain behaviour of "wet" clay. In: Engineering plasticity. Edited by J. Heyman, F. Leckie. Cambridge University Press, Cambridge, UK, 535-609. otwiera się w nowej karcie
  24. Brinkgreve, R.B.J. (1994). Geomaterial models and numerical analysis of softening. Ph.D. Dissertation. Delft University of Technology, Delft.
  25. Muir Wood, D. (1990). Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press.
  26. ZSoil.PC 2018 User Manual. (2018).
  27. Schanz, T. (1998). Zur Modellierung des mechanischen Verhaltens von Reibungsmaterialien. Habilitation. Stuttgart Universität.
  28. Schanz, T. , Vermeer, P.A., Bonnier, P.G. (1999). The hardening soil model: Formulation and verification. In: Beyond 2000 in Computational Geotechnics. Edited by R.B.J. Brinkgreve, Balkema, Rotterdam, 281-296. otwiera się w nowej karcie
  29. Niemunis A. (2003). Extended hypoplastic models for soils. Habilitation. Ruhr-University Bochum.
  30. Wang, W.M. (1997). Stationary and Propagative Instabilities in Metals -A Computational Point of View. Ph.D. Dissertation. Delft University of Technology, Delft. otwiera się w nowej karcie
  31. Simo, J.C., Hughes, T.J.R. (1998). Computational Inelasticity. Springer-Verlag, New York. otwiera się w nowej karcie
  32. Heeres, O.M. (2001). Modern strategies for the numerical modeling of the cyclic and transient behavior of soils. Ph.D. Dissertation. Delft University of Technology, Delft.
  33. Winnicki, A., Pearce, C.J., Bićanić, N. (2001). Viscoplastic Hoffman consistency model for concrete. Computers and Structures, 79, 7-19. otwiera się w nowej karcie
  34. Łupieżowiec, M. (2003). Consistent viscoplastic model - conception and experimental verification. In: Proceedings of the 2nd International Young Geotechnical Engineers' Conference 2003, Mamaia.
  35. Stolle, D.F.E., Bonnier, P.G., Vermeer, P.A. (1997). A soft soil model and experiences with two integration schemes. In: Proceedings of the 6th International Symposium on Numerical Models in Geomechanics 1997, Montreal. otwiera się w nowej karcie
  36. Vermeer, P.A., Neher, H.P. (1999). A soft soil model that accounts for creep. In: Beyond 2000 in Computational Geotechnics. Edited by R.B.J. Brinkgreve, Balkema, Rotterdam, 249-261. otwiera się w nowej karcie
  37. Brinkgreve, R.B.J. (2004). Time-dependent behaviour of soft soils during embankment construction -a numerical study. In: Numerical Model in Geomechanics, Proceedings of NUMOG IX. Ottawa, Canada. otwiera się w nowej karcie
  38. Boudali, M. (1995). Comportementtridi mensionnelet visqueuxdesargiles naturelles. Ph.D. Dissertation. Universite Laval, Quebec.
  39. Leoni, M., Karstunen, M., Vermeer, P.A. (2008). Anisotropic creep model for soft soils. Géotechnique, 58, 215-226. otwiera się w nowej karcie
  40. Niemunis, A., Grandas-Tavera, C.E. (2009). Anisotropic visco-hypoplasticity. Acta Geotechnica, 4, 293-314. otwiera się w nowej karcie
  41. Sexton, B.G., McCabe, B.A, Karstunen, M., Sivasithamparam, N. (2016). Stone column settlement performance in structured anisotropic clays: the influence of creep. Journal of Rock Mechanics and Geotechnical Engineering, 8, 672-688. otwiera się w nowej karcie
  42. Norton, F.H. (1929). The creep of steel at high temperatures. McGraw Hill, NY.
  43. Leroueil, S., Marques, M. (1996). Importance of strain rate and temperature effects in geotechnical engineering. ASCE Convention, USA. otwiera się w nowej karcie
  44. de Borst, R., Pamin, J. (1996). Some novel developments in finite element procedures for gradient-dependent plasticity. International Journal for Numerical Methods in Engineering, 39, 2477-2505. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 165 razy

Publikacje, które mogą cię zainteresować

Meta Tagi