Monitoring of lysozyme thermal denaturation by volumetric measurements and nanoDSF technique in the presence of N-butylurea - Publikacja - MOST Wiedzy

Wyszukiwarka

Monitoring of lysozyme thermal denaturation by volumetric measurements and nanoDSF technique in the presence of N-butylurea

Abstrakt

The results of thermal studies of denaturation of hen egg white lysozyme (HEWL) in water and an aqueous solution of N-butylurea (BU) are presented. High-precision densimetric measurements were used to characterize and analyze the changes of the specific volume, v, during temperature elevation. The temperature of the midpoint of protein denaturation was also determined by nanoDSF technique (differential scanning fluorimetry). The densities of lysozyme solutions were measured at temperatures ranging from 298.15 to 353.15 K with an interval of 5 K at atmospheric pressure (0.1 MPa). The concentration of the protein covered the range from 2 to 20 mg per 1 ml of the solution. The optimal range of the concentration for the densimetric measurements was roughly estimated. In the transition region, the structural changes of the protein are accompanied by the biggest increase of ν values with temperature. Our measurements show that this effect can be monitored from volumetric data without precise determination of protein concentration. The results prove that a two-state model of denaturation could be used for data interpretation. Contrary to common misconception, the volumetric measurements suggest that the denatured protein does not necessarily need to be in a fully extended state. In this way, the ‘protein volume paradox’ could be explained. The surface area of the protein remains unchanged and thus the increase of the specific volume of the protein is relatively small. Additionally, the self-stabilizing effect of the protein in BU solution was reported. For the HEWL in pure water, this phenomenon was not observed.

Cytowania

  • 4

    CrossRef

  • 4

    Web of Science

  • 4

    Scopus

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
JOURNAL OF BIOLOGICAL PHYSICS nr 45, strony 161 - 172,
ISSN: 0092-0606
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Krakowiak J., Krajewska M., Wawer J.: Monitoring of lysozyme thermal denaturation by volumetric measurements and nanoDSF technique in the presence of N-butylurea// JOURNAL OF BIOLOGICAL PHYSICS. -Vol. 45, iss. 2 (2019), s.161-172
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s10867-019-09521-9
Bibliografia: test
  1. Garidel, P., Hegyi, M., Bassarab, S., Weichel, M.: A rapid, sensitive and economical assessment of monoclonal antibody conformational stability by intrinsic tryptophan fluorescence spectroscopy. Biotechnol. J. 3, 1201-1211 (2008) otwiera się w nowej karcie
  2. Johnson, C.M.: Differential scanning calorimetry as a tool for protein folding and stability. Arch. Biochem. Biophys. 531, 100-109 (2013) otwiera się w nowej karcie
  3. Kong, J., Yu, S.: Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. Shanghai 39, 549-559 (2007) otwiera się w nowej karcie
  4. Whitmore, L., Wallace, B.A.: Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers. 89, 392-400 (2008) otwiera się w nowej karcie
  5. Whitmore, L., Wallace, B.A.: DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 32, W668-W673 (2004) otwiera się w nowej karcie
  6. Krakowiak, J., Wawer, J., Panuszko, A.: Densimetric and ultrasonic characterization of urea and its derivatives in water. J. Chem. Thermodyn. 58, 211-220 (2013) otwiera się w nowej karcie
  7. Krakowiak, J., Wawer, J.: Hydration of urea and its derivatives-volumetric and compressibility studies. J. Chem. Thermodyn. 79, 109-117 (2014) otwiera się w nowej karcie
  8. Lin, L.-N., Brandts, J.F., Brandts, J.M., Plotnikov, V.: Determination of the volumetric properties of proteins and other solutes using pressure perturbation calorimetry. Anal. Biochem. 302, 144- 160 (2002) otwiera się w nowej karcie
  9. Rosgen, J., Hinz, H.-J.: Response functions of proteins. Biophys. Chem. 83, 61-71 (2000) otwiera się w nowej karcie
  10. Wawer, J., Krakowiak, J.: Structural changes of water caused by non-electrolytes: volumetric and com- pressibility approach for urea-like analogues. J. Mol. Liq. 259, 112-123 (2018) otwiera się w nowej karcie
  11. Panuszko, A., Bruździak, P., Kaczkowska, E., Stangret, J.: General mechanism of osmolytes' influence on protein stability irrespective of the type of osmolyte cosolvent. J. Phys. Chem. B 120, 11159-11169 (2016) otwiera się w nowej karcie
  12. Sirotkin, V.A., Winter, R.: Volume changes associated with guanidine hydrochloride, temperature, and ethanol induced unfolding of lysozyme. J. Phys. Chem. B 114, 16881-16886 (2010) otwiera się w nowej karcie
  13. Lee, S., Tikhomirova, A., Shalvardjian, N., Chalikian, T.V.: Partial molar volumes and adiabatic compress- ibilities of unfolded protein states. Biophys. Chem. 134, 185-199 (2008) otwiera się w nowej karcie
  14. Chalikian, T.V., Totrov, M., Abagyan, R., Breslauer, K.J.: The hydration of globular proteins as derived from volume and compressibility measurements: cross correlating thermodynamic and structural data. J. Mol. Biol. 260, 588-603 (1996) otwiera się w nowej karcie
  15. Mitra, L., Rouget, J.-B., Garcia-Moreno, B., Royer, C.A., Winter, R.: Towards a quantitative understanding of protein hydration and volumetric properties. ChemPhysChem. 9, 2715-2721 (2008) otwiera się w nowej karcie
  16. Murphy, L.R., Matubayasi, N., Payne, V.A., Levy, R.M.: Protein hydration and unfolding-insights from experimental partial specific volumes and unfolded protein models. Fold. Des. 3, 105-118 (1998) otwiera się w nowej karcie
  17. Chalikian, T.V., Völker, J., Anafi, D., Breslauer, K.J.: The native and the heat-induced denatured states of α- chymotrypsinogen a: thermodynamic and spectroscopic studies. J. Mol. Biol. 274, 237-252 (1997) otwiera się w nowej karcie
  18. Chalikian, T.V., Breslauer, K.J.: On volume changes accompanying conformational transitions of biopoly- mers. Biopolymers. 39, 619-626 (1998) otwiera się w nowej karcie
  19. Harpaz, Y., Gerstein, M., Chothia, C.: Volume changes on protein folding. Structure 2, 641-649 (1994) otwiera się w nowej karcie
  20. Royer, C.A.: Revisiting volume changes in pressure-induced protein unfolding. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1595, 201-209 (2002) otwiera się w nowej karcie
  21. Sasahara, K., Sakurai, M., Nitta, K.: The volume and compressibility changes of lysozyme associated with guanidinium chloride and pressure-assisted unfolding. J. Mol. Biol. 291, 693-701 (1999) otwiera się w nowej karcie
  22. Goncalves, L.C.P., Kracher, D., Milker, S., Fink, M.J., Rudroff, F., Ludwig, R., Bommarius, A.S., Mihovilovic, M.D.: Mutagenesis-independent stabilization of class B flavin monooxygenases in operation. Adv. Synth. Catal. 359, 2121-2131 (2017) otwiera się w nowej karcie
  23. Muca, R., Marek, W., Żurawski, M., Piątkowski, W., Antos, D.: Effect of mass overloading on binding and elution of unstable proteins in hydrophobic interaction chromatography. J. Chromatogr. A 1492, 79-88 (2017) otwiera się w nowej karcie
  24. Hédoux, A., Krenzlin, S., Paccou, L., Guinet, Y., Flament, M.-P., Siepmann, J.: Influence of urea and guanidine hydrochloride on lysozyme stability and thermal denaturation; a correlation between activity, protein dynamics and conformational changes. Phys. Chem. Chem. Phys. 12, 13189-13196 (2010) otwiera się w nowej karcie
  25. Blumlein, A., McManus, J.J.: Reversible and non-reversible thermal denaturation of lysozyme with varying pH at low ionic strength, Biochim. Biophys. Acta -Proteins Proteomics. 1834, 2064-2070 (2013) otwiera się w nowej karcie
  26. Kamiyama, T., Liu, H.L., Kimura, T.: Preferential solvation of lysozyme by dimethyl sulfoxide in binary solutions of water and dimethyl sulfoxide. J. Therm. Anal. Calorim. 95, 353-359 (2009) otwiera się w nowej karcie
  27. Bruździak, P., Panuszko, A., Kaczkowska, E., Piotrowski, B., Daghir, A., Demkowicz, S., Stangret, J.: Taurine as a water structure breaker and protein stabilizer. Amino Acids. 50, 125-140 (2018) otwiera się w nowej karcie
  28. Matsue, S., Fujii, T., Miyawaki, O.: Effects of water activity and aqueous solvent ordering on thermal stability of lysozyme, α-chymotrypsinogen A, and alcohol dehydrogenase. Int. J. Biol. Macromol. 28, 343- 349 (2001) otwiera się w nowej karcie
  29. Smirnovas, V., Winter, R., Funck, T., Dzwolak, W.: Thermodynamic properties underlying the α-helix-to-β- sheet transition, aggregation, and amyloidogenesis of polylysine as probed by calorimetry, densimetry, and ultrasound velocimetry. J. Phys. Chem. B 109, 19043-19045 (2005) otwiera się w nowej karcie
  30. Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 34 razy

Publikacje, które mogą cię zainteresować

Meta Tagi