Multi-objective optimization of microextraction procedures - Publikacja - MOST Wiedzy

Wyszukiwarka

Multi-objective optimization of microextraction procedures

Abstrakt

Optimization of extraction process requiresfinding acceptable conditions for many analytes and goodperformance in terms of process time or solvent consumption. These optimization criteria are oftencontradictory to each other, the performance of the system in given conditions is good for some criteriabut poor for others. Therefore, such problems require special assessment tools that allow to combinethese contradictory criteria into single score tofind“the golden mean”. This contribution summarizes theexamples of approaches that are used for multi-objective optimization. Derringer's desirability functionsare used for large variety of microextraction techniques optimizations. Finding Pareto-optimal solutionsallows to easily separate conditions that are definitely not acceptable. Alternative solution is applicationof multi-criteria decision analysis for microextraction processes optimization.

Cytowania

  • 1 5

    CrossRef

  • 0

    Web of Science

  • 1 4

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 55 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
TRAC-TRENDS IN ANALYTICAL CHEMISTRY strony 266 - 273,
ISSN: 0165-9936
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Bystrzanowska M., Tobiszewski M.: Multi-objective optimization of microextraction procedures// TRAC-TRENDS IN ANALYTICAL CHEMISTRY. -, iss. 116 (2019), s.266-273
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.trac.2018.12.031
Bibliografia: test
  1. Servili, M., Selvaggini, R., Taticchi, A., Begliomini, A. L., &Montedoro, G. Relationships between the volatile compounds evaluated by solid phase microextraction and the thermal treatment of tomato juice: optimization of the blanching parameters. Food Chem. 71(3) (2000) 407-415. otwiera się w nowej karcie
  2. Heidari, H., &Razmi, H. Multi-response optimization of magnetic solid phase extraction based on carbon coated Fe3O4 nanoparticles using desirability function approach for the determination of the organophosphorus pesticides in aquatic samples by HPLC-UV. Talanta 99(2012) 13-21. otwiera się w nowej karcie
  3. Monteleone, M., Naccarato, A., Sindona, G., &Tagarelli, A. A reliable and simple method for the assay of neuroendocrine tumor markers in human urine by solid-phase microextraction-gas chromatography-triple quadrupole mass spectrometry. Anal. Chim. Acta 759 (2013) 66-73. otwiera się w nowej karcie
  4. Pano-Farias, N. S., Ceballos-Magaña, S. G., Muñiz-Valencia, R., Jurado, J. M., Alcázar, Á., & Aguayo-Villarreal, I. A. Direct immersion single drop micro-extraction method for multi-class pesticides analysis in mango using GC-MS. Food Chem. 237(2017) 30-38. otwiera się w nowej karcie
  5. Heidari, H., Razmi, H., &Jouyban, A. Desirability function approach for the optimization of an in- syringe ultrasound-assisted emulsification-microextraction method for the simultaneous determination of amlodipine and nifedipine in plasma samples. J. Separ. Sci. 37(12) (2014) 1467-1474. otwiera się w nowej karcie
  6. Vosough, M., Mojdehi, N. R., &Salemi, A. Chemometrics assisted dispersive liquid-liquid microextraction for quantification of seven UV filters in urine samples by HPLC-DAD. J. Separ. Sci. 35(24) (2012) 3575-3585. otwiera się w nowej karcie
  7. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & Da Fonseca, V. G. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evol.Comp. 7(2)(2003) 117-132. otwiera się w nowej karcie
  8. Li, M., Zhen, L., & Yao, X. How to Read Many-Objective Solution Sets in Parallel Coordinates [Educational Forum]. otwiera się w nowej karcie
  9. IEEE Comp. Intel. Mag. 12(4)(2017) 88-100. otwiera się w nowej karcie
  10. Ortiz, M. C., Sarabia, L. A., Sánchez, M. S., & Arroyo, D. Improving the visualization of the Pareto- optimal front for the multi-response optimization of chromatographic determinations. Anal. Chim. Acta 687(2)(2011) 129-136. otwiera się w nowej karcie
  11. Morales, R., Sarabia, L. A., Sánchez, M. S., & Ortiz, M. C. Experimental design for the optimization of the derivatization reaction in determining chlorophenols and chloroanisoles by headspace-solid-phase microextraction-gas chromatography/mass spectrometry. J. Chromatogr. A 1296 (2013) 179-195. otwiera się w nowej karcie
  12. Arce, M. M., Sanllorente, S., Ortiz, M. C., &Sarabia, L. A. Easy-to-use procedure to optimise a chromatographic method. Application in the determination of bisphenol-A and phenol in toys by means of liquid chromatography with fluorescence detection. J. Chromatogr. A 1534(2018) 93-100. otwiera się w nowej karcie
  13. De Aguiar, P. F., Vander Heyden, Y., &Massart, D. L. Study of different criteria for the selection of a rugged optimum in high performance liquid chromatography optimisation. Anal. Chim. Acta 348(1- otwiera się w nowej karcie
  14. Arce, M. M., Sanllorente, S., Ortiz, M. C., &Sarabia, L. A. Easy-to-use procedure to optimise a chromatographic method. Application in the determination of bisphenol-A and phenol in toys by means of liquid chromatography with fluorescence detection. J. Chromatogr. A, 1534 (2018) 93-100. otwiera się w nowej karcie
  15. Huang, I. B., Keisler, J., &Linkov, I. Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Sci.Total Environ. 409(19) (2011) 3578-3594. otwiera się w nowej karcie
  16. Bystrzanowska, M., &Tobiszewski, M. How can analysts use multicriteria decision analysis? Trends Anal. Chem. 105 (2018) 98-105. otwiera się w nowej karcie
  17. Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 39(17) (2012) 13051-13069. otwiera się w nowej karcie
  18. Bigus, P., Namieśnik, J., &Tobiszewski, M. Application of multicriteria decision analysis in solvent type optimization for chlorophenols determination with a dispersive liquid-liquid microextraction. J. Chromatogr. A 1446 (2016) 21-26. otwiera się w nowej karcie
  19. Bystrzanowska, M., Marcinkowska, R., Pena-Pereira, F., &Tobiszewski, M. Selection of derivatisation agents for chlorophenols determination with multicriteria decision analysis. Microchem. J.145 (2019). 664-671. otwiera się w nowej karcie
  20. Bigus, P., Namieśnik, J., &Tobiszewski, M. Implementation of multicriteria decision analysis in design of experiment for dispersive liquid-liquid microextraction optimization for chlorophenols determination. J. Chromatogr. A 1553 (2018) 25-31. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 104 razy

Publikacje, które mogą cię zainteresować

Meta Tagi