Musical Instrument Tagging Using Data Augmentation and Effective Noisy Data Processing - Publikacja - MOST Wiedzy

Wyszukiwarka

Musical Instrument Tagging Using Data Augmentation and Effective Noisy Data Processing

Abstrakt

Developing signal processing methods to extract information automatically has potential in several applications, for example searching for multimedia based on its audio content, making context-aware mobile applications (e.g., tuning apps), or pre-processing for an automatic mixing system. However, the last-mentioned application needs a significant amount of research to reliably recognize real musical instruments in recordings. In this paper we primarily focus on how to obtain data for efficiently training, validating, and testing a deep-learning model by using a data augmentation technique. These data are transformed into 2D feature spaces, i.e., mel-scale spectrograms. The Neural Network used in the experiments consists of a single-block DenseNet architecture and a multi-head softmax classifier for efficient learning with the mixup augmentation. For automatic noisy data labeling, the batch-wise loss masking, which is robust to corrupting outliers in data, was applied. To train the models, various audio sample rates and different audio representations were utilized. The method provides promising recognition scores even with real-world recordings that contain noisy data.

Cytowania

  • 7

    CrossRef

  • 0

    Web of Science

  • 7

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 277 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (2020 Audio Eng. Society)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
JOURNAL OF THE AUDIO ENGINEERING SOCIETY nr 68, strony 57 - 65,
ISSN: 1549-4950
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Koszewski D., Kostek B.: Musical Instrument Tagging Using Data Augmentation and Effective Noisy Data Processing// JOURNAL OF THE AUDIO ENGINEERING SOCIETY -Vol. 68,iss. 1/2 (2020), s.57-65
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.17743/jaes.2019.0050
Źródła finansowania:
  • Działalność statutowa/subwencja
Weryfikacja:
Politechnika Gdańska

wyświetlono 173 razy

Publikacje, które mogą cię zainteresować

Meta Tagi