Neoclassical Navier–Stokes Equations Considering the Gyftopoulos–Beretta Exposition of Thermodynamics - Publikacja - MOST Wiedzy

Wyszukiwarka

Neoclassical Navier–Stokes Equations Considering the Gyftopoulos–Beretta Exposition of Thermodynamics

Abstrakt

The seminal Navier-Stokes equations were stated even before the creation of the foundations of thermodynamics and its first and second laws. There is a widespread opinion in the literature on thermodynamic cycles that the Navier-Stokes equations cannot be taken as a thermodynamically correct model of a local "working fluid", which would be able to describe the conversion of "heating" into "working" (Carnot's type cycles) and vice versa (Afanasjeva's type cycles). Also, it is overall doubtful that "cycle work is converted into cycle heat" or vice versa. The underlying reason for this situation is that the Navier-Stokes equations come from a time when thermodynamic concepts such as "internal energy" were still poorly understood. Therefore, this paper presents a new exposition of thermodynamically consistent Navier-Stokes equations. Following that line of reasoning-and following Gyftopoulos and Beretta's exposition of thermodynamics-we introduce the basic concepts of thermodynamics such as "heating" and "working" fluxes. We also develop the Gyftopoulos and Beretta approach from 0D into 3D continuum thermodynamics. The central role within our approach is played by "internal energy" and "energy conversion by fluxes." Therefore, the main problem of exposition relates to the internal energy treated here as a form of "energy storage." Within that context, different forms of energy are discussed. In the end, the balance of energy is presented as a sum of internal, kinetic, potential, chemical, electrical, magnetic, and radiation energies in the system. These are compensated by total energy flux composed of working, heating, chemical, electrical, magnetic, and radiation fluxes at the system boundaries. Therefore, the law of energy conservation can be considered to be the most important and superior to any other law of nature. This article develops and presents in detail the neoclassical set of Navier-Stokes equations forming a thermodynamically consistent model. This is followed by a comparison with the definition of entropy (for equilibrium and non-equilibrium states) within the context of available energy as proposed in the Gyftopoulos and Beretta monograph. The article also discusses new possibilities emerging from this "continual" Gyftopoulos-Beretta exposition with special emphasis on those relating to extended irreversible thermodynamics or Van's "universal second law".

Cytowania

  • 2

    CrossRef

  • 2

    Web of Science

  • 2

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 17 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
ENERGIES nr 13,
ISSN: 1996-1073
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Badur J., Feidt M., Ziółkowski P.: Neoclassical Navier–Stokes Equations Considering the Gyftopoulos–Beretta Exposition of Thermodynamics// ENERGIES -Vol. 13,iss. 7 (2020), s.1656-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/en13071656
Bibliografia: test
  1. Gyftopoulos, E.P.; Beretta, G.P. Thermodynamics, Foundations and Applications, 2nd ed.; Dover Publications Inc.: Mineola, NY, USA, 2005.
  2. Beretta, G.P.; Gyftopoulos, E.P. Teaching energy and entropy before temperature and heat not vice versa. Antti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Nat. Messina 1992, 70, 331-340. otwiera się w nowej karcie
  3. Palazzo, P. Thermal and Chemical Aspect in Equation of State and Relation with Generalized Thermodynamic Entropy. Int. J. Thermodyn. 2018, 21, 55-60. [CrossRef] otwiera się w nowej karcie
  4. Keenan, J.H.; Hatsopoulos, G.H.; Gyftopoulos, E.P. Thermodynamics, Principles of. In Encyclopaedia Britannica; Compton's MultiMedia Publishing Group: Chicago, IL, USA, 1974; pp. 290-315.
  5. Feidt, M. Thermodynamique et Optimization Énergétique Das systems et Proceeds; Technique et Documentation: Paris, France, 1987. (In French)
  6. Sieniutycz, S. Conservation Laws in Variational Thermo-Hydrodynamics; otwiera się w nowej karcie
  7. Müller, I.; Ruggeri, T. Rational Extended Thermodynamics; Springer: Berlin, Germany, 1998. otwiera się w nowej karcie
  8. Jou, D.; Casas Vàzquez, J.; Lebon, G. Extended Irreversible Thermodynamics; Springer: Berlin, Germany, 2001. otwiera się w nowej karcie
  9. Kjelstrup, S.; Bedeaux, D. Non-Equilibrium Thermodynamics of Heterogeneous Systems; Word Scientific Pub.: Singapore, 2008.
  10. Badur, J. Rozwój Pojęcia Energii, Development of Energy Concept; IMP PAN Publishers: Gdańsk, Poland, 2009; pp. 1-1167. (In Polish) otwiera się w nowej karcie
  11. Eckart, C. The thermodynamics of irreversible process, I. The simple fluid. Phys. Rev. 1940, 58, 267-269. [CrossRef] otwiera się w nowej karcie
  12. Beretta, G.P.; Gyftopoulos, E.P. What is heat? In Education in Thermodynamics and Energy Systems. In Proceedings of the Winter Annual Meeting of the American Society of Mechanical Engineers, Dallas, TX, USA, 25-30 November 1990; otwiera się w nowej karcie
  13. Tsatsaronis, G., Moran, M.J., Bejan, M.A., Eds.; ASME Book: New York, NY, USA, 1990; Volume 20, pp. 33-41. otwiera się w nowej karcie
  14. Gyftopoulos, E.P.; Beretta, G.P. What is the second law? In Second Law Analysis and Thermal Systems; otwiera się w nowej karcie
  15. Moran, M.J., Sciubba, E., Eds.; American Society of Mechanical Engineers: New York, NY, USA, 1987; pp. 155-170.
  16. Beretta, G.P.; Gyftopoulos, E.P. A novel sequence of exposition of engineering thermodynamics. J. Energy Resour. Technol. 2015, 137. [CrossRef] otwiera się w nowej karcie
  17. Zanchini, E.; Beretta, G.P. Removing heat and conceptual loops from the definition of entropy. Int. J. Thermodyn. 2010, 13, 67-76. otwiera się w nowej karcie
  18. Zanchini, E.; Beretta, G.P. Rigorous operational definition of entropy not based on the concepts of heat and of empirical temperature. In Proceedings of the 12th Joint European Thermodynamics Conference, Brescia, Italy, 1-5 July 2013; Pilotelli, M., Beretta, G.P., Eds.; Snoopy: Brescia, Italy, 2013; pp. 152-160. otwiera się w nowej karcie
  19. Gyftopoulos, E.P.; von Spakovsky, N.R. Quantum-theoretic shapes of constituencies of system in various states. J. Eng. Res. 2003, 125, 1-8. otwiera się w nowej karcie
  20. Von Spakovsky, M.R. Intrinsic quantum thermodynamic; what it is and what can be done with it. In Proceedings of the 12th Joint European Thermodynamics Conference, Brescia, Italy, 1-5 July 2013; otwiera się w nowej karcie
  21. Pilotelli, M., Beretta, G.P., Eds.; Snoopy: Brescia, Italy, 2013; pp. 359-369.
  22. Palazzo, P. Proposal for generalized exergy and entropy properties based on stable equilibrium of composed system-reservoir. J. Mod. Phys. 2013, 4, 52-58. [CrossRef] otwiera się w nowej karcie
  23. Badur, J.; Feidt, M.; Ziółkowski, P. Without Heat and Work-Further Remarks on the Gyftopoulos-Beretta Exposition of Thermodynamics. Int. J. Thermodyn. 2018, 21, 180-184. [CrossRef] otwiera się w nowej karcie
  24. Callen, H.B. Thermodynamics and an Introduction to Thermostatistics, 2nd ed.; Wiley: New York, NY, USA, 1985. otwiera się w nowej karcie
  25. Swendsen, R.H. Thermodynamics, Statistical Mechanics and Entropy. Entropy 2017, 19, 603. [CrossRef] otwiera się w nowej karcie
  26. Carnot, S. Réflections Sur La Puissance Motrice De Feu Et Sur Las Machines Propres à Déveloper Cette Puissance; otwiera się w nowej karcie
  27. Transleted to English: Thurston, R.H. Reflection on Motive Power of Fire and on Machines Fitted to Develop that Power; Publisher: Macmillan and Company: New York, NY, USA, 1890; Bachelier: Paris, France, 1824. otwiera się w nowej karcie
  28. Navier, C.L.M.H. Mémoire sur les lois du mouvement des fluids, Memory on the laws of fluid motion. Mémoires L'académie R. Sci. L'institut Fr. 1827, 6, 389-440. (In French)
  29. Stokes, G. On the theories of internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans. Camb. Philos. Soc. 1845, 8, 287-319. otwiera się w nowej karcie
  30. Darrigol, O. Between hydrodynamics and elasticity theory: The first five births of the Navier-Stokes equation. Arch. Hist. Exact Sci. 2002, 56, 95-150. [CrossRef] otwiera się w nowej karcie
  31. Badur, J. Wieczysta Konwersja Energii Eternal Energy Conversion; IMP PAN Publishers: Gdansk, Poland, 2017. (In Polish)
  32. Badur, J. Energy-Conversion, conservation and management. Trans. Inst. Fluid-Flow Mach. 2015, 127, 27-43. otwiera się w nowej karcie
  33. Badur, J.; Karcz, M. Energy. In Encyclopaedia of Thermal Stresses, 1st ed.; Hetnarski, R., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 1266-1269. otwiera się w nowej karcie
  34. Rankine, W.J.M. Outlines of the science of energetic. Edinb. New Philos. J. 1855, 2, 120-141.
  35. Natanson, L. On the laws of viscosity. Philos. Mag. 1901, 2, 342-356. [CrossRef] otwiera się w nowej karcie
  36. Duhem, P. Traité D'énergétique ou de Thermodynamique Générale: Tome I: Conservation de L'énergie Mécanique Rationnelle. Statique Générale Déplacement de L'équilibre; otwiera się w nowej karcie
  37. Tome II: Dynamique Générale Conductibilité De La Chaleur Stabilité de L'équilibre; Gauthier-Villars: Paris, France, 1911. (In French) otwiera się w nowej karcie
  38. Kestin, J. A Course of Thermodynamics; Blasdell: Toronto, ON, Canada, 1966; Volume I. otwiera się w nowej karcie
  39. Truesdell, C.A. The Tragicomical History of Thermodynamics; Springer: New York, NY, USA, 1980. otwiera się w nowej karcie
  40. Gyftopoulos, E.P. Scientific revolution, Thermodynamics as a general nonstatistical science of any systems in any state. In Proceedings of the ECOS 2002, Berlin, Germany, 3-5 July 2002; pp. 14-22. otwiera się w nowej karcie
  41. Gyftopoulos, E.P. Fundamentals of analysis of process. Energy Convers. Manag. 1997, 36, 1525-1533. [CrossRef] otwiera się w nowej karcie
  42. Beretta, G.P. Axiomatic definition of entropy for non-equilibrium states. Int. J. Thermodyn. 2008, 11, 39-48.
  43. Beretta, G.P. Nonlinear quantum evolution equations to model irreversible adiabatic relaxation with maximal entropy production and other nonunitary process. Rep. Math. Phys. 2008, 64, 139-159. [CrossRef] otwiera się w nowej karcie
  44. Feidt, M. Finite Physical Dimensions Optimal Thermodynamics 1 Fundamentals; ISTE Press: London, UK; Elsevier: Oxford, UK, 2017. otwiera się w nowej karcie
  45. Feidt, M. Optimal thermodynamics new upperbounds. Entropy 2009, 11, 529-547. [CrossRef] otwiera się w nowej karcie
  46. Feidt, M. Thermodynamics applied to reverse cycle machines, a review. Int. J. Refrig. 2010, 33, 1327-1342. [CrossRef] otwiera się w nowej karcie
  47. Gaggioli, R.A. Principles of Thermodynamics. In Thermodynamics: Second Law Analysis; Gaggioli, R.A., Ed.; American Chemical Society: Washington, DC, USA, 1980; pp. 1-13. otwiera się w nowej karcie
  48. Cimmelli, V.A. Conceptual analysis of the entropy principle in continuum physics, an overview. In Proceedings of the 12th Joint European Thermodynamics Conference, JETC 2013, Brescia, Italy, 1-5 July 2013;
  49. Pilotelli, M., Beretta, G.P., Eds.; Snoopy: Brescia, Italy, 2013; pp. 208-209.
  50. Lebon, G.; Jou, D.; Casas-Vázques, J. Understanding Non-Equilibrium Thermodynamics; Springer: Berlin, Germany, 2008. otwiera się w nowej karcie
  51. Stuke, B. Tensorielle chemische potential-Eine notwendige Erweiterung der Gibbs'schen Thermodynamik. Z. Naturforsch. 1975, 30, 1433-1440. [CrossRef] otwiera się w nowej karcie
  52. Delfin, M.; Francavigalia, M.; Restuccia, L. Thermodynamics of deformable dielectrics with a non-Euclidean structure as internal variable. Tech. Mech. 2004, 24, 137-147.
  53. Kowalczyk, T.; Ziółkowski, P.; Sławiński, D.; Cisak, M.; Badur, J. A role of the heat and work uncompensated transformations in the balance of entropy and the turbomachinery efficiency. Trans. Inst. Fluid-Flow Mach. 2017, 135, 11-27. otwiera się w nowej karcie
  54. Marchis, L. Termodynamique;
  55. Thermodynamics, A., Gratier, J., Eds.; Rey: Grenoble, France, 1904. (In French)
  56. Brenner, H. Kinematics of volume transport. Physica 2005, 349, 11-59. [CrossRef] otwiera się w nowej karcie
  57. Grmela, M.; Öttinger, H.C. Dynamics and thermodynamics of complex fluids. I. development of a general formalism. Phys. Rev. 1997, 56, 6620-6632. [CrossRef] otwiera się w nowej karcie
  58. Fülöp, T.; Ván, P.; Csatár, A. Elasticity, plasticity, rheology and thermal stress-An irreversible thermodynamicsl theory. In Proceedings of the 12th Joint European Thermodynamics Conference, JETC 2013, Brescia, Italy, 1-5 July 2013; otwiera się w nowej karcie
  59. Pilotelli, M., Beretta, G.P., Eds.; Snoopy: Brescia, Italy, 2013; pp. 525-530.
  60. Brenner, H. Navier-Stokes revisited. Physica 2005, 349, 60-132. [CrossRef] otwiera się w nowej karcie
  61. Brenner, H. Beyond Navier-Stokes. Int. J. Eng. Sci. 2012, 54, 67-98. [CrossRef] otwiera się w nowej karcie
  62. Poisson, S. Mémoire sur les Equations générales de l'équilibre et du mouvement des Corps solides, élastiques et fluids, Essay on the general equation of equilibrium motion of a solid body in elastic fluids. J. L'ecole Polytech. 1829, 13, 1-174. (In French)
  63. Karniadakis, G.E.; Beskok, A.; Aluru, N. Microflows and Nanoflows: Fundamentals and Simulation; Springer: New York, NY, USA, 2005.
  64. Badur, J.; Karcz, M.; Lemański, M.; Nastałek, L. Foundations of the Navier-Stokes boundary conditions in fluid mechanics. Trans. Inst. Fluid-Flow Mach. 2011, 123, 3-55. otwiera się w nowej karcie
  65. Badur, J.; Ziółkowski, P.; Zakrzewski, W.; Sławiński, D.; Banaszkiewicz, M.; Kaczmarczyk, O.; Kornet, S.; Ziółkowski, P.J. On the surface vis impressa caused by a fluid-solid contact. In Shell Structure Theory and Applications; Pietraszkiewicz, W., Górski, J., Eds.; Taylor & Francis: London, UK, 2014; Volume 3, pp. 53-56. otwiera się w nowej karcie
  66. Duhem, P. Reserches sur l'hydrodynamique, Research on hydrodynamics. Ann. Fac. Sci. Toulouse 1903, 5, 353-404. (In French) [CrossRef] otwiera się w nowej karcie
  67. Ziółkowski, P.; Badur, J. On Navier slip and Reynolds transpiration numbers. Arch. Mech. 2018, 70, 269-300. otwiera się w nowej karcie
  68. Graham, T. On the motion of gases. Philos. Trans. R. Soc. Lond. 1846, 131, 573-632. otwiera się w nowej karcie
  69. Graham, T. On the motion of gases. Philos. Trans. R. Soc. Lond. 1849, 137, 349-362. otwiera się w nowej karcie
  70. Von Smoluchowski, M. Drei vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Z. Phys. 1916, 17, 557-585. otwiera się w nowej karcie
  71. Keh, H.J.; Anderson, J.L. Boundary effects on electrophoretic motion of colloidal sphere. J. Fliud Mech. 1985, 153, 417-439. [CrossRef] otwiera się w nowej karcie
  72. Bilicki, Z.; Badur, J. A thermodynamically consistent relaxation model for turbulent binary mixture undergoing phase transition. J. Non-Equilib. Thermodyn. 2003, 28, 145-172. [CrossRef] otwiera się w nowej karcie
  73. Badur, J.; Ziółkowski, P. Further remarks on the surface vis impressa caused by a fluid-solid contact. In Proceedings of the 12th Joint European Thermodynamics Conference, JETC 2013, Brescia, Italy, 1-5 July 2013; otwiera się w nowej karcie
  74. Pilotelli, M., Beretta, G.P., Eds.; Snoopy: Brescia, Italy, 2013; pp. 581-586.
  75. Reynolds, O. On the equation of motion and the boundary conditions for viscous fluid, 1883. In Scientific Papers on Mechanics and Physical Subjects Tome 2; Cambridge University Press: Cambridge, UK, 1901; Volume 46, pp. 132-137.
  76. Badur, J.; Karcz, M.; Lemański, M.; Nastałek, L. Enhancement transport phenomena in the Navier-Stokes shell-like slip layer. Comput. Model. Eng. Sci. 2011, 73, 299-310. [CrossRef] otwiera się w nowej karcie
  77. Badur, J.; Ziółkowski, P.J.; Ziółkowski, P. On the angular velocity slip in nano flows. Microfluid. Nanofluid. 2015, 19, 191-198. [CrossRef] otwiera się w nowej karcie
  78. Ziółkowski, P.; Badur, J. A theoretical, numerical and experimental verification of the Reynolds thermal transpiration law. Int. J. Numer. Methods Heat Fluid Flow 2018, 28, 64-80. [CrossRef] otwiera się w nowej karcie
  79. Badur, J.; Karcz, M.; Lemański, M. On the mass and momentum transport in the Navier-Stokes slip layer. Microfluid. Nanofluid. 2011, 11, 439-449. [CrossRef] otwiera się w nowej karcie
  80. Su, J.; Wang, L.; Gu, Z.; Zhang, Y.; Chen, C. Advances in pore-scale simulation of oil reservoirs. Energies 2018, 11, 1132. [CrossRef] otwiera się w nowej karcie
  81. Badur, J.; Nastałek, L. Thermodynamics of Thermo-deformable Solids. In Encyclopaedia of Thermal Stresses, 1st ed.; Hetnarski, R., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 5584-5593. otwiera się w nowej karcie
  82. Ván, P. Weakly non-local irreversible thermodynamics-The Guyer-Krumhansl and the Chan-Hilliard equations. Phys. Lett. A 2001, 290, 88-91. [CrossRef] otwiera się w nowej karcie
  83. Ván, P.; Papenfluss, C. Thermodynamic consistency of third grade finite strain elasticity. Proc. Est. Acad. Sci. 2010, 59, 126-132. [CrossRef] otwiera się w nowej karcie
  84. Scovil, H.E.D.; Schulz-DuBois, E.O. Three-level masers as heat engines. Phys. Rev. Lett. 1959, 2, 262-263. [CrossRef] otwiera się w nowej karcie
  85. Ghosh, A.; Gelbwaser-Klimovsky, D.; Niedenzu, W.; Lvovsky, A.; Mazets, I.; Scully, M.O.; Kurizki, G. Two-level masers as heat-to-work converters. Proc. Natl. Acad. Sci. USA 2018, 115, 9941-9944. [CrossRef] otwiera się w nowej karcie
  86. Scully, M.O.; Chapin, K.R.; Dorfman, K.E.; Kim, M.B.; Svidzinsky, A. Quantum heat engine power can be increased by noise-induced coherence. Proc. Natl. Acad. Sci. USA 2011, 108, 15097-15100. [CrossRef] otwiera się w nowej karcie
  87. Lieb, E.H.; Yngvason, J. The physics and mathematics of the second law of thermodynamics. Phys. Rep. 1999, 310, 1-96. [CrossRef] otwiera się w nowej karcie
  88. Prigogine, I. From Being to Becoming: Time and Complexity in the Physical Sciences;
  89. W.H. Freeman and Company: New York, NY, USA, 1980.
  90. Pauli, W. Thermodynamics and the Kinetic Theory of Gases: Volume 3 of Pauli Lectures on Physics; Dover Publications: New York, NY, USA, 1973. otwiera się w nowej karcie
  91. Hatsopoulos, G.N.; Keenan, J.H. Principles of General Thermodynamics; Wiley: New York, NY, USA, 1965. otwiera się w nowej karcie
  92. Prigogine, I.; Stengers, I. Order Out of Chaos: Man's New Dialogue with Nature; Heinemann: London, UK, 1984.
  93. Beretta, G.P. Steepest-entropy-ascent and maximal entropy production dynamical models of irreversible relaxation to state equilibrium from any non-equilibrium state. Unified treatment for six non-equilibrium frameworks. In Proceedings of the 12th Joint European Thermodynamics Conference, JETC 2013, Brescia, Italy, 1-5 July 2013; Pilotelli, M., Beretta, G.P., Eds.; Snoopy: Brescia, Italy, 2013; pp. 100-109. otwiera się w nowej karcie
  94. Bejan, A. Entropy Generation through Heat and Fluid Flow; Wiley: New York, NY, USA, 1982. otwiera się w nowej karcie
  95. Ván, P. Thermodynamics of continua: The challenge of universality. In Proceedings of the 12th Joint European Thermodynamics Conference, JETC 2013, Brescia, Italy, 1-5 July 2013; Pilotelli, M., Beretta, G.P., Eds.; Snoopy: Brescia, Italy, 2013; pp. 228-233.
  96. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 34 razy

Publikacje, które mogą cię zainteresować

Meta Tagi