New semi-causal and noncausal techniques for detection of impulsive disturbances in multivariate signals with audio applications - Publikacja - MOST Wiedzy

Wyszukiwarka

New semi-causal and noncausal techniques for detection of impulsive disturbances in multivariate signals with audio applications

Abstrakt

This paper deals with the problem of localization of impulsive disturbances in nonstationary multivariate signals. Both unidirectional and bidirectional (noncausal) detection schemes are proposed. It is shown that the strengthened pulse detection rule, which combines analysis of one-step-ahead signal prediction errors with critical evaluation of leave-one-out signal interpolation errors, allows one to noticeably improve detection results compared to the prediction-only based solutions. The proposed general purpose approach is illustrated with two examples of practical applications – elimination of impulsive disturbances (such as clicks, pops and record scratches) from archive audio files and robust parametric spectrum estimation.

Cytowania

  • 3

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 47 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (2017 IEEE)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
IEEE TRANSACTIONS ON SIGNAL PROCESSING nr 65, wydanie 15, strony 3881 - 3892,
ISSN: 1053-587X
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Niedźwiecki M., Ciołek M.: New semi-causal and noncausal techniques for detection of impulsive disturbances in multivariate signals with audio applications// IEEE TRANSACTIONS ON SIGNAL PROCESSING. -Vol. 65, iss. 15 (2017), s.3881-3892
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/tsp.2017.2692740
Bibliografia: test
  1. M. Ciołek, M. Niedźwiecki, S. Sieklicki, J. Drozdowski and J. Siebert, "Automated Detection of sleep apnea and hypopnea events based on robust airflow envelope tracking in the presence of breathing artifacts," IEEE J. Biom. and Health Inf., vol. 19, pp. 418-429, 2015. otwiera się w nowej karcie
  2. S. Sanei and J. Chambers, EEG Signal Processing. New York: Wiley, 2007. otwiera się w nowej karcie
  3. M. Niedźwiecki, M. Ciołek and K. Cisowski, "Elimination of impulsive disturbances from stereo audio recordings using vector autoregressive modeling and variable-order Kalman filtering," IEEE Trans. Audio, Speech Lang. Process., vol. 23, pp. 970-981, 2015. otwiera się w nowej karcie
  4. A.J. Fox, "Outliers in time series," J. Royal Statist. Soc. Ser. B, vol. 34, pp. 350-363, 1972. otwiera się w nowej karcie
  5. M. Gupta, J. Gao, C.C. Aggarwal and K. J. Han, "Outlier detection for temporal data: A survey," IEEE Trans. Knowledge Data Eng., vol. 25, pp. 1-20, 2014. otwiera się w nowej karcie
  6. R. S. Tsay, "Time series model specification in the presence of outliers," J. Amer. Statist. Ass., vol. 81, pp. 132-141, 1986. otwiera się w nowej karcie
  7. I. Chang, G. C. Tiao, and C. Chen, "Estimation of time series parameters in the presence of outliers," Technometrics, vol. 30, pp. 193-204, 1988. otwiera się w nowej karcie
  8. C. Chen and L.-M. Liu, "Joint estimation of model parameters and outlier effects in time series," Journal of the American Statistical Association, vol. 88, pp. 284-297, 1993. otwiera się w nowej karcie
  9. G. M. Ljung, "On outlier detection in time series," J. Royal Statist. Soc. Ser. B, vol. 55, pp. 559-567, 1993. otwiera się w nowej karcie
  10. B. Abraham and A. Chuang, "Outlier detection and time series model- ing," Technometrics, vol. 31, pp. 241-248, 1989. otwiera się w nowej karcie
  11. A. M. Bianco, M. García Ben, E. J. Martnez, and V. J. Yohai, "Outlier detection in regression models with ARIMA errors using robust esti- mates," Journal of Forecasting, vol. 20, pp. 565-579, 2001. otwiera się w nowej karcie
  12. A. Justel, D. Peña, and R. S. Tsay, "Detection of outlier patches in autoregressive time series," Statistica Sinica, vol. 11, pp. 651-674, 2001.
  13. C.M. Hicks and S.J. Godsill, "A two-channel approach to the removal of impulse noise from archived recordings," in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), 1994, (2) pp. 213-216. otwiera się w nowej karcie
  14. R.S. Tsay, D. Peña, and A.E. Pankratz, "Outliers in multivariate time series," Biometrika, vol. 87, pp. 789-804, 2000. otwiera się w nowej karcie
  15. J.-M. Helbling and R. Cléroux, "On outlier detection in multivariate time series," Acta Math. Vietnamica, vol 34, pp. 19-26, 2009.
  16. P. Galeano, D. Peña, and R. S. Tsay, "Outlier detection in multivariate time series by projection pursuit," J. Amer. Statist. Ass., vol. 101, pp. 654-669, 2006. otwiera się w nowej karcie
  17. R. Baragona and F. Battaglia, "Outliers detection in multivariate time series by independent component analysis," Neural Computation, vol. 19, pp. 1962-1984, 2007 otwiera się w nowej karcie
  18. M. Niedźwiecki and K. Cisowski, "Adaptive scheme for elimination of broadband noise and impulsive disturbances from AR and ARMA signals," IEEE Trans. Audio, Signal Process., vol. 44, pp. 528-537, 1996. otwiera się w nowej karcie
  19. J.S. Godsill and J.P.W. Rayner, Digital Audio Restoration, Springer- Verlag, 1998. otwiera się w nowej karcie
  20. S.V. Vaseghi, Advanced Signal Processing and Digital Noise Reduction, Wiley, 2008. otwiera się w nowej karcie
  21. M. Niedźwiecki and M. Ciołek, "Elimination of impulsive disturbances from archive audio signals using bidirectional processing," IEEE Trans. Audio Speech Lang. Process., vol. 21, pp. 1046-1059, 2013. otwiera się w nowej karcie
  22. H. Lütkepohl, New Introduction to Multiple Time Series Analysis. New York: Springer-Verlag, 2005. otwiera się w nowej karcie
  23. M. Niedźwiecki, "Statistical reconstruction of multivariate time series," IEEE Trans. Signal Process., vol. 41, pp. 451-457, 1993. otwiera się w nowej karcie
  24. T. Söderström and P. Stoica, System Identification. Englewoods Cliffs NJ: Prentice-Hall, 1988.
  25. M. Niedźwiecki, Identification of Time-varying Processes. New York: Wiley, 2000. otwiera się w nowej karcie
  26. A. Zellner, "An efficient method of estimating seemingly unrelated regressions and tests of aggregation bias," Journ. Am. Statist. Ass., vol. 57, pp. 348-368, 1962. otwiera się w nowej karcie
  27. S.J. Godsill and P.J.W. Rayner, "Statistical reconstruction and analysis of autoregressive signals in impulsive noise using the Gibbs sampler," IEEE Trans. Speech Audio Process., vol. 6, pp. 352-372, 1998. otwiera się w nowej karcie
  28. F.R.Ávila and L.W.P. Biscainho, "Bayesian restoration of audio signals degraded by impulsive noise modeled as individual pulses," IEEE Trans. Audio, Speech Lang. Process., vol. 20, pp. 2470-2481, 2012. otwiera się w nowej karcie
  29. J.J.K.Ó Ruanaidh and W.J. Fitzgerald, "Interpolation of missing samples for audio restoration," Electron. Lett., vol. 30, 1994. otwiera się w nowej karcie
  30. M. Niedźwiecki and M. Ciołek, "Localization of impulsive disturbances in audio signals using template matching," Digital Signal Process., vol. 46, pp. 253-265, 2015. otwiera się w nowej karcie
  31. ITU-R Recommendation BS.1387, "Method for Objective Measure- ments of Perceived Audio Quality," 1998. otwiera się w nowej karcie
  32. P. Kabal, "An Examination and Interpretation of ITU-R Recommenda- tion BS.1387: Perceptual Evaluation of Audio Quality," Department of Electrical & Computer Engineering, McGill University, Canada, 2003.
  33. R. Dahlhaus, "Fitting time series models to nonstationary processes," Ann. Statist., vol. 30, pp. 351-413, 1997. otwiera się w nowej karcie
  34. R. Dahlhaus, "Local inference for locally stationary time series based on the empirical spectral measure," Journal of Econometrics, vol. 151, pp. 101-112, 2009. otwiera się w nowej karcie
  35. R. Dahlhaus, "Locally stationary processes," Handbook Statist., vol. 25, pp. 1-37, 2012. otwiera się w nowej karcie
  36. A. Ferrante, C. Masiero, and M. Pavon, "Time and spectral domain relative entropy: A new approach to multivariate spectral estimation," IEEE Trans. Automat. Contr., vol. 57, pp. 2561-2575, 2012. otwiera się w nowej karcie
  37. F. Itakura and S. Saito, "A statistical method for estimation of speech spectral density and formant frequencies," Electron. Commun. Jap., vol. 53-A, pp. 36-43, 1970.
  38. Maciej Niedźwiecki (M'08, SM'13) received the M.Sc. and Ph.D. degrees from the Technical Uni- versity of Gdańsk, Gdańsk, Poland and the Dr.Hab. (D.Sc.) degree from the Technical University of Warsaw, Warsaw, Poland, in 1977, 1981 and 1991, respectively. He spent three years as a Research Fellow with the Department of Systems Engineering, Australian National University, 1986-1989. In 1990 -1993 he served as a Vice Chairman of Technical Committee on Theory of the International Federation of Automatic Control (IFAC). He is the author of the book Identification of Time-varying Processes (Wiley, 2000). His main areas of research interests include system identification, statistical signal processing and adaptive systems. Dr. Niedźwiecki is currently a member of the IFAC committees on otwiera się w nowej karcie
  39. Modeling, Identification and Signal Processing and on Large Scale Complex Systems, and a member of the Automatic Control and Robotics Committee of the Polish Academy of Sciences (PAN). He works as a Professor and Head of the Department of Automatic Control, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology. Marcin Ciołek (M'17) received the M.Sc. and Ph.D. degrees from the Gdańsk University of Technol- ogy (GUT), Gdańsk, Poland, in 2010 and 2017, respectively. Since 2017, he has been working as an Adjunct Professor in the Department of Automatic Control, Faculty of Electronics, Telecommunications and Informatics, GUT. His professional interests include speech, music and biomedical signal pro- cessing.
Weryfikacja:
Politechnika Gdańska

wyświetlono 107 razy

Publikacje, które mogą cię zainteresować

Meta Tagi