The analyzes were aimed at demonstrating the influence of parameters describing the deformation of the structure on the uncertainty of critical force, and the impact of technological imperfections on stress uncertainty in compression conditions. In a linear buckling analysis, the problem is considered only for the initial, permanent state of the stiffness matrix. In the case of demonstrating the influence of initial deformations on the behavior of the structure under load, it is necessary to visualize changes in stiffness over time. To this end, a non-linear MES analysis was carried out, which will take into account local changes in the stiffness of the model through a gradual increase in the load. Thus, the difference in stiffness is taken into account, which in the linear problem is infinite. The analysis was used to examine the local and global sensitivity of the parameters describing: plating thickness as well as deformation caused by the technological process on the stress value reduced by Huber hypothesis, and the value of normal stress. To take into account the influence of non-specified values of the magnitude of geometric deviations, and their simultaneous influence on the range of obtained results, the Experimental Planning Method and the Surface Method of Answers were used.


  • 0


  • 0

    Web of Science

  • 0


Cytuj jako

Informacje szczegółowe

Publikacja w czasopiśmie
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Polish Maritime Research nr 25, strony 100 - 107,
ISSN: 1233-2585
Rok wydania:
Opis bibliograficzny:
Kahsin M., STECKI D.: NON-LINE ANALYSIS OF STIFFNESS IN COMPRESSION CONDITIONS// Polish Maritime Research. -Vol. 25, iss. 2(98) (2018), s.100-107
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.2478/pomr-2018-0060
Bibliografia: test
  1. Broekea G. Voorna G., Ligtenbergb A.: Which Sensitivity Analysis Method Should I Use for My Agent-Based Model?. Journal of Artificial Societies and Social Simulation 19, 2016.
  2. Chen, Z., Ajit Shenoi, R.: Influence of welding sequence on welding deformation and residual stress of a stiffened plate structure. Ocean Engineering, Volume 106, 15 September 2015, Pages 271-280. otwiera się w nowej karcie
  3. Czitrom V.: One-Factor-at-a-Time Versus Designed Experiments, American Statistician. Vol. 53, 1999. otwiera się w nowej karcie
  4. Det Norske Veritas, Recomended Practice: Determination of Structural Capacity by Non-linear FE analysis Methods, June 2013 otwiera się w nowej karcie
  5. Fisher R.A.: The Design of Experiments. Eighth Edition. Oliver and Boyd, Edinburgh 1966.
  6. International Association of Classification Societies: Technical Background Report for CSR, 2016. otwiera się w nowej karcie
  7. Kahsin M., Luczak M.: Numerical Model Quality Assessment of Offshore Wind Turbine Supporting Structure Based on Experimental Data. Structural health monitoring 2015: system reliability for verification and implementation, vols. 1 and 2, pp. 2817-2824 Published: 2015. otwiera się w nowej karcie
  8. Kyung K. Choi, Nam H. Kim: Structural Sensitivity Analysis and Optimization 1. Mechanical engineering series, Berlin, Germany, 2013 otwiera się w nowej karcie
  9. Marino S., Hogue I.B., et al.: A Methodology For Performing Global Uncertainty And Sensitivity Analysis In Systems Biology, 2008 otwiera się w nowej karcie
  10. Mathews D.G.: Design and Analysis of Experiments, Eighth edition. Arizona State University, 2013.
  11. Mathews D.G.: Design of Experiments with MINITAB. American Society for Quality, 2005.
  12. Montgomery, D.C.: Design and Analysis of Experiments, Eighth edition.Arizona State University, 2013.
  13. Polski Rejestr Statków, Standardy budowy i napraw statków. Publikacja informacyjna nr 16/I, Gdańsk 2011.
  14. Saltelli A., Ratto M., Andres, et al.: Global Sensitivity Analysis: The Primer. John Wiley & Sons. (2008). otwiera się w nowej karcie
  15. Stocki R.: Analiza niezawodności i optymalizacja odpornościowa. Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk, Warszawa 2010
  16. Viana, F.A.C., Haftka R.T., Steffen V.: Multiple Surrogates: How Cross-Validation Errors Can Help Us to Obtain the Best Predictor. Structural and Multidisciplinary Optimization, Vol. 39, No. 4, 2009, pp. 439-457. otwiera się w nowej karcie
Politechnika Gdańska

wyświetlono 30 razy

Publikacje, które mogą cię zainteresować

Meta Tagi