On Inadequacy of Sequential Design of Experiments for Performance-Driven Surrogate Modeling of Antenna Input Characteristics - Publikacja - MOST Wiedzy

Wyszukiwarka

On Inadequacy of Sequential Design of Experiments for Performance-Driven Surrogate Modeling of Antenna Input Characteristics

Abstrakt

Design of contemporary antennas necessarily involves electromagnetic (EM) simulation tools. Their employment is imperative to ensure evaluation reliability but also to carry out the design process itself, especially, the adjustment of antenna dimensions. For the latter, traditionally used parameter sweeping is more and more often replaced by rigorous numerical optimization, which entails considerable computational expenses, sometimes prohibitive. A potentially attractive way of expediting the simulation-based design procedures is the replacement of expensive EM analysis by fast surrogate models (or metamodels). Unfortunately, due to the curse of dimensionality and considerable nonlinearity of antenna characteristics, applicability of conventional modeling methods is limited to structures described by small numbers of parameters within narrow ranges thereof. A recently proposed nested kriging technique works around these issues by allocating the surrogate model domain within the regions containing designs that are of high quality with respect to the selected performance figures. This paper investigates whether sequential design of experiments (DoE) is capable of enhancing the modeling accuracy over one-shot space-filling data sampling originally implemented in the nested kriging framework. Numerical verification carried out for two microstrip antennas indicates that no noticeable benefits can be achieved, which contradicts the common-sense expectations. This result can be explained by a particular geometry of the confined domain of the performance-driven surrogate. As this set consists of nearly-optimum designs, the average nonlinearity of the antenna responses therein is almost location independent, therefore optimum training data allocation should be close to uniform. This is indeed corroborated by our experiments.

Cytowania

  • 1

    CrossRef

  • 1

    Web of Science

  • 1

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 7 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
IEEE Access nr 8, strony 78417 - 78426,
ISSN: 2169-3536
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Pietrenko-Dąbrowska A., Kozieł S.: On Inadequacy of Sequential Design of Experiments for Performance-Driven Surrogate Modeling of Antenna Input Characteristics// IEEE Access -Vol. 8, (2020), s.78417-78426
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/access.2020.2988891
Bibliografia: test
  1. Q. Li, J. Dong, J. Yang, X. Zhuang, X. Yu, G. Hu, and Y. Guo, ''Automated topology optimization of internal antenna design using improved BPSO,'' in Proc. Int. Appl. Comput. Electromagn. Soc. Symp. (ACES), Suzhou, China, 2017, pp. 1-2. otwiera się w nowej karcie
  2. C. Hu, S. Zeng, Y. Jiang, J. Sun, Y. Sun, and S. Gao, ''A robust technique without additional computational cost in evolutionary antenna optimiza- tion,'' IEEE Trans. Antennas Propag., vol. 67, no. 4, pp. 2252-2259, Apr. 2019. otwiera się w nowej karcie
  3. A. Sharma, E. Kampianakis, and M. S. Reynolds, ''A dual-band HF and UHF antenna system for implanted neural recording and stimulation devices,'' IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 493-496, 2017. otwiera się w nowej karcie
  4. J. Dong, W. Qin, and M. Wang, ''Fast multi-objective optimization of multi-parameter antenna structures based on improved BPNN surrogate model,'' IEEE Access, vol. 7, pp. 77692-77701, 2019. otwiera się w nowej karcie
  5. X. Zhao, S. P. Yeo, and L. C. Ong, ''Planar UWB MIMO antenna with pattern diversity and isolation improvement for mobile platform based on the theory of characteristic modes,'' IEEE Trans. Antennas Propag., vol. 66, no. 1, pp. 420-425, Jan. 2018. otwiera się w nowej karcie
  6. J. Lundgren, A. Ericsson, and D. Sjoberg, ''Design, optimization and verification of a dual band circular polarization selective structure,'' IEEE Trans. Antennas Propag., vol. 66, no. 11, pp. 6023-6032, Nov. 2018. otwiera się w nowej karcie
  7. J.-F. Qian, F.-C. Chen, K.-R. Xiang, and Q.-X. Chu, ''Resonator-loaded multi-band microstrip slot antennas with bidirectional radiation patterns,'' IEEE Trans. Antennas Propag., vol. 67, no. 10, pp. 6661-6666, Oct. 2019. otwiera się w nowej karcie
  8. Y.-Y. Liu and Z.-H. Tu, ''Compact differential band-notched stepped-slot UWB-MIMO antenna with common-mode suppression,'' IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 593-596, 2017. otwiera się w nowej karcie
  9. K. Saurav, N. K. Mallat, and Y. M. M. Antar, ''A three-port polarization and pattern diversity ring antenna,'' IEEE Antennas Wireless Propag. Lett., vol. 17, no. 7, pp. 1324-1328, Jul. 2018. otwiera się w nowej karcie
  10. R. Leyva-Hernandez, J. A. Tirado-Mendez, H. Jardon-Aguilar, R. Flores-Leal, R. Linares, and Y. Miranda, ''Reduced size elliptic UWB antenna with inscribed third iteration sierpinski triangle for on-body applications,'' Microw. Opt. Technol. Lett., vol. 59, no. 3, pp. 635-641, Mar. 2017. otwiera się w nowej karcie
  11. G.-L. Huang, S.-G. Zhou, and T. Yuan, ''Development of a wideband and high-efficiency waveguide-based compact antenna radiator with binder- jetting technique,'' IEEE Trans. Compon., Packag., Manuf. Technol., vol. 7, no. 2, pp. 254-260, 2nd Quart., 2017. otwiera się w nowej karcie
  12. M. S. Alam and A. M. Abbosh, ''Beam-steerable planar antenna using cir- cular disc and four PIN-controlled tapered stubs for WiMAX and WLAN applications,'' IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 980-983, 2016. otwiera się w nowej karcie
  13. K. D. Xu, D. Li, Y. Liu, and Q. H. Liu, ''Printed quasi-yagi antennas using double dipoles and stub-loaded technique for multi-band and broadband applications,'' IEEE Access, vol. 6, pp. 31695-31702, 2018. otwiera się w nowej karcie
  14. T. Cheng, W. Jiang, S. Gong, and Y. Yu, ''Broadband SIW cavity-backed modified dumbbell-shaped slot antenna,'' IEEE Antennas Wireless Propag. Lett., vol. 18, no. 5, pp. 936-940, May 2019. otwiera się w nowej karcie
  15. Y. Liu, S. Wang, X. Wang, and Y. Jia, ''A differentially fed dual-polarized slot antenna with high isolation and low profile for base station applica- tion,'' IEEE Antennas Wireless Propag. Lett., vol. 18, no. 2, pp. 303-307, Feb. 2019. otwiera się w nowej karcie
  16. Z. Niu, H. Zhang, Q. Chen, and T. Zhong, ''Isolation enhancement for 1×3 closely spaced E-plane patch antenna array using defect ground structure and metal-vias,'' IEEE Access, vol. 7, pp. 119375-119383, 2019. otwiera się w nowej karcie
  17. T. Jhajharia, V. Tiwari, D. Yadav, S. Rawat, and D. Bhatnagar, ''Wideband circularly polarised antenna with an asymmetric meandered- shaped monopole and defected ground structure for wireless communi- cation,'' IET Microw., Antennas Propag., vol. 12, no. 9, pp. 1554-1558, Jul. 2018. otwiera się w nowej karcie
  18. J. Yang, J. Flygare, M. Pantaleev, and B. Billade, ''Development of quadruple-ridge flared horn with spline-defined profile for band b of the wide band single pixel feed (WBSPF) advanced instrumentation pro- gramme for SKA,'' in Proc. IEEE Int. Symp. Antennas Propag. (APSURSI), Fajardo, Puerto Rico, Jun. 2016, pp. 1345-1346. otwiera się w nowej karcie
  19. H. J. Gibson, B. Thomas, L. Rolo, M. C. Wiedner, A. E. Maestrini, and P. de Maagt, ''A novel spline-profile diagonal horn suitable for integration into THz split-block components,'' IEEE Trans. Terahertz Sci. Technol., vol. 7, no. 6, pp. 657-663, Nov. 2017. otwiera się w nowej karcie
  20. S. Koziel and S. Ogurtsov, Simulation-Based Optimization of Antenna Arrays. Singapore: World Scientific, 2019. otwiera się w nowej karcie
  21. G. Bilgin, V. S. Yilmaz, A. Kara, and E. Aydin, ''Comparative assessment of electromagnetic simulation tools for use in microstrip antenna design: Experimental demonstrations,'' Microw. Opt. Technol. Lett., vol. 61, no. 2, pp. 349-356, Feb. 2019. otwiera się w nowej karcie
  22. S. Koziel and A. Pietrenko-Dabrowska, ''Variable-fidelity simulation mod- els and sparse gradient updates for cost-efficient optimization of compact antenna input characteristics,'' Sensors, vol. 19, no. 8, p. 1806, 2019. otwiera się w nowej karcie
  23. M.-C. Tang, X. Chen, M. Li, and R. W. Ziolkowski, ''Particle swarm optimized, 3-D-printed, wideband, compact hemispherical antenna,'' IEEE Antennas Wireless Propag. Lett., vol. 17, no. 11, pp. 2031-2035, Nov. 2018. otwiera się w nowej karcie
  24. S. Koziel and A. Bekasiewicz, ''Statistical analysis and robust design of cir- cularly polarized antennas using sequential approximate optimization,'' in Proc. 22nd Int. Microw. Radar Conf. (MIKON), Poznań, Poland, May 2018, pp. 424-427. otwiera się w nowej karcie
  25. S. Lee, Y. Yang, K.-Y. Lee, K.-Y. Jung, and K. Hwang, ''Robust design of 3D-printed 6-18 GHz double-ridged TEM horn antenna,'' Appl. Sci., vol. 8, no. 9, p. 1582, 2018. otwiera się w nowej karcie
  26. G. Allaire, ''A review of adjoint methods for sensitivity analysis, uncer- tainty quanti-fication, and optimization in numerical codes,'' Ingenieurs de l'Automobile, SIA, Singapore, Tech. Rep. hal-01242950, Dec. 2015, vol. 836, pp. 33-36.
  27. S. Koziel and A. Bekasiewicz, ''Fast EM-driven size reduction of antenna structures by means of adjoint sensitivities and trust regions,'' IEEE Anten- nas Wireless Propag. Lett., vol. 14, pp. 1681-1684, 2015. otwiera się w nowej karcie
  28. Y. Zhang, N. K. Nikolova, and M. K. Meshram, ''Design optimization of planar structures using self-adjoint sensitivity analysis,'' IEEE Trans. Antennas Propag., vol. 60, no. 6, pp. 3060-3066, Jun. 2012. otwiera się w nowej karcie
  29. A. Pietrenko-Dabrowska and S. Koziel, ''Numerically efficient algorithm for compact microwave device optimization with flexible sensitivity updat- ing scheme,'' Int. J. RF Microw. Comput.-Aided Eng., vol. 29, no. 7, Jul. 2019, Art. no. e21714. otwiera się w nowej karcie
  30. S. Koziel and A. Pietrenko-Dabrowska, ''Reduced-cost electromagnetic- driven optimisation of antenna structures by means of trust-region gradient-search with sparse jacobian updates,'' IET Microw., Antennas Propag., vol. 13, no. 10, pp. 1646-1652, Aug. 2019. otwiera się w nowej karcie
  31. L. Zappelli, ''Optimization procedure of four-port and six-port directional couplers based on polygon equivalent circuit,'' IEEE Trans. Microw. The- ory Techn., vol. 66, no. 10, pp. 4471-4481, Oct. 2018. otwiera się w nowej karcie
  32. S. Koziel and S. Ogurtsov, Antenna Design by Simulation-Driven Opti- mization, Berlin, Germany: Springer, 2014. otwiera się w nowej karcie
  33. J. C. Cervantes-González, J. E. Rayas-Sánchez, C. A. López, J. R. Camacho-Pérez, Z. Brito-Brito, and J. L. Chávez-Hurtado, ''Space mapping optimization of handset antennas considering EM effects of mobile phone components and human body,'' Int. J. RF Microw. Comput.-Aided Eng., vol. 26, no. 2, pp. 121-128, Feb. 2016. otwiera się w nowej karcie
  34. D. Echeverria, D. Lahaye, L. Encica, E. A. Lomonova, P. W. Hemker, and A. J. A. Vandenput, ''Manifold-mapping optimization applied to linear actuator design,'' IEEE Trans. Magn., vol. 42, no. 4, pp. 1183-1186, Apr. 2006. otwiera się w nowej karcie
  35. S. Koziel and S. D. Unnsteinsson, ''Expedited design closure of antennas by means of trust-region-based adaptive response scaling,'' IEEE Antennas Wireless Propag. Lett., vol. 17, no. 6, pp. 1099-1103, Jun. 2018. otwiera się w nowej karcie
  36. L. Leifsson and S. Koziel, ''Surrogate modelling and optimization using shape-preserving response prediction: A review,'' Eng. Optim., vol. 48, no. 3, pp. 476-496, Mar. 2016. otwiera się w nowej karcie
  37. B. Liu, H. Aliakbarian, Z. Ma, G. A. E. Vandenbosch, G. Gielen, and P. Excell, ''An efficient method for antenna design optimization based on evolutionary computation and machine learning techniques,'' IEEE Trans. Antennas Propag., vol. 62, no. 1, pp. 7-18, Jan. 2014. otwiera się w nowej karcie
  38. D. He, C. Liu, T. Q. S. Quek, and H. Wang, ''Transmit antenna selection in MIMO wiretap channels: A machine learning approach,'' IEEE Wireless Commun. Lett., vol. 7, no. 4, pp. 634-637, Aug. 2018. otwiera się w nowej karcie
  39. S. Trehan, K. T. Carlberg, and L. J. Durlofsky, ''Error modeling for surrogates of dynamical systems using machine learning,'' Int. J. Numer. Methods Eng., vol. 112, no. 12, pp. 1801-1827, Dec. 2017. otwiera się w nowej karcie
  40. R. R. Alavi, R. Mirzavand, J. Doucette, and P. Mousavi, ''An adap- tive data acquisition and clustering technique to enhance the speed of spherical near-field antenna measurements,'' IEEE Antennas Wire- less Propag. Lett., vol. 18, no. 11, pp. 2325-2329, Nov. 2019, doi: 10. 1109/LAWP.2019.2938732. otwiera się w nowej karcie
  41. J. E. Rayas-Sanchez and V. Gutierrez-Ayala, ''EM-based Monte Carlo analysis and yield prediction of microwave circuits using linear-input neural-output space mapping,'' IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, pp. 4528-4537, Dec. 2006. otwiera się w nowej karcie
  42. J. Du and C. Roblin, ''Stochastic surrogate models of deformable antennas based on vector spherical harmonics and polynomial chaos expansions: Application to textile antennas,'' IEEE Trans. Antennas Propag., vol. 66, no. 7, pp. 3610-3622, Jul. 2018. otwiera się w nowej karcie
  43. B. Liu, M. O. Akinsolu, N. Ali, and R. Abd-Alhameed, ''Efficient global optimisation of microwave antennas based on a parallel surrogate model- assisted evolutionary algorithm,'' IET Microw., Antennas Propag., vol. 13, no. 2, pp. 149-155, Feb. 2019. otwiera się w nowej karcie
  44. S. Koziel and A. Pietrenko-Dabrowska, Performance-Driven Surrogate Modeling of High-Frequency Structures. New York, NY, USA: Springer, 2020. otwiera się w nowej karcie
  45. J. P. C. Kleijnen, ''Kriging metamodeling in simulation: A review,'' Eur. J. Oper. Res., vol. 192, no. 3, pp. 707-716, Feb. 2009. otwiera się w nowej karcie
  46. C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. Cambridge, MA, USA: MIT Press, 2006. otwiera się w nowej karcie
  47. A. I. J. Forrester and A. J. Keane, ''Recent advances in surrogate-based optimization,'' Prog. Aerosp. Sci., vol. 45, nos. 1-3, pp. 50-79, Jan. 2009. otwiera się w nowej karcie
  48. S. Mishra, R. N. Yadav, and R. P. Singh, ''Directivity estimations for short dipole antenna arrays using radial basis function neural networks,'' IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1219-1222, 2015. otwiera się w nowej karcie
  49. P. Manfredi, D. V. Ginste, I. S. Stievano, D. De Zutter, and F. G. Canavero, ''Stochastic transmission line analysis via polynomial chaos methods: An overview,'' IEEE Electromagn. Compat. Mag., vol. 6, no. 3, pp. 77-84, 2017. otwiera się w nowej karcie
  50. X. Ma and N. Zabaras, ''An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differ- ential equations,'' J. Comput. Phys., vol. 229, no. 10, pp. 3884-3915, May 2010. otwiera się w nowej karcie
  51. J. Lee, G.-T. Gil, and Y. H. Lee, ''Channel estimation via orthogonal matching pursuit for hybrid MIMO systems in millimeter wave communi- cations,'' IEEE Trans. Commun., vol. 64, no. 6, pp. 2370-2386, Jun. 2016. otwiera się w nowej karcie
  52. B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, ''Least angle regres- sion,'' Ann. Statist., vol. 32, no. 2, pp. 407-499, 2004.
  53. D. J. J. Toal and A. J. Keane, ''Efficient multipoint aerodynamic design optimization via cokriging,'' J. Aircr., vol. 48, no. 5, pp. 1685-1695, Sep. 2011. otwiera się w nowej karcie
  54. F. Wang, P. Cachecho, W. Zhang, S. Sun, X. Li, R. Kanj, and C. Gu, ''Bayesian model fusion: Large-scale performance modeling of analog and mixed-signal circuits by reusing early-stage data,'' IEEE Trans. otwiera się w nowej karcie
  55. Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 8, pp. 1255-1268, Aug. 2016.
  56. S. Koziel, ''Low-cost data-driven surrogate modeling of antenna structures by constrained sampling,'' IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 461-464, 2017. otwiera się w nowej karcie
  57. S. Koziel and A. T. Sigurdsson, ''Triangulation-based constrained surro- gate modeling of antennas,'' IEEE Trans. Antennas Propag., vol. 66, no. 8, pp. 4170-4179, Aug. 2018. otwiera się w nowej karcie
  58. S. Koziel and A. Bekasiewicz, ''On reduced-cost design-oriented con- strained surrogate modeling of antenna structures,'' IEEE Antennas Wire- less Propag. Lett., vol. 16, pp. 1618-1621, 2017. otwiera się w nowej karcie
  59. S. Koziel, A. T. Siguresson, and S. Szczepanski, ''Uniform sampling in constrained domains for low-cost surrogate modeling of antenna input characteristics,'' IEEE Antennas Wireless Propag. Lett., vol. 17, no. 1, pp. 164-167, Jan. 2018. otwiera się w nowej karcie
  60. S. Koziel and A. Pietrenko-Dabrowska, ''Performance-based nested sur- rogate modeling of antenna input characteristics,'' IEEE Trans. Antennas Propag., vol. 67, no. 5, pp. 2904-2912, May 2019. otwiera się w nowej karcie
  61. Z. Liu, M. Yang, and W. Li, ''A sequential latin hypercube sampling method for metamodeling,'' in Theory, Methodology, Tools and Applica- tions for Modeling and Simulation of Complex Systems, vol. 643, L. Zhang, X. Song, and Y. Wu, Eds. Singapore: Springer, 2016, pp. 176-185. otwiera się w nowej karcie
  62. J. Liu, Z. Han, and W. Song, ''Comparison of infill sampling criteria in kriging-based aerodynamic optimization,'' in Proc. 28th Int. Congr. Aeronaut. Sci., Brisbane, QLD, Australia, 2012, pp. 23-28.
  63. B. Beachkofski and R. Grandhi, ''Improved distributed hypercube sam- pling,'' in Proc. 43rd AIAA/ASME/ASCE/AHS/ASC Struct., Struct. Dyn., Mater. Conf., Apr. 2002, p. 1274. otwiera się w nowej karcie
  64. K. Crombecq, E. Laermans, and T. Dhaene, ''Efficient space-filling and non-collapsing sequential design strategies for simulation-based model- ing,'' Eur. J. Oper. Res., vol. 214, no. 3, pp. 683-696, Nov. 2011. otwiera się w nowej karcie
  65. J. Kleijnen and W. Beers, ''Application-driven sequential designs for sim- ulation experiments: Kriging metamodeling,'' J. Oper. Res. Soc., vol. 55, no. 8, pp. 876-883, 2004. otwiera się w nowej karcie
  66. J. Kleijnen, ''Design and analysis of simulation experiments,'' in Statis- tics and Simulation. IWS 2015. Springer Proceedings in Mathematics & Statistics, vol. 231, J. Pilz, D. Rasch, V. Melas, and K. Moder, Eds. Cham, Switzerland: Springer, 2018. otwiera się w nowej karcie
  67. S. Koziel, L. Leifsson, I. Couckuyt, and T. Dhaene, ''Reliable reduced cost modeling and design optimization of microwave filters using co-kriging,'' Int. J. Numer. Model., vol. 26, pp. 493-505, Sep. 2013. otwiera się w nowej karcie
  68. M. Kennedy, ''Predicting the output from a complex computer code when fast approximations are available,'' Biometrika, vol. 87, no. 1, pp. 1-13, Mar. 2000. otwiera się w nowej karcie
  69. I. Couckuyt, ''Forward and inverse surrogate modeling of computationally expensive problems,'' Ph.D. dissertation, Fac. Eng. Archit., Dept. Inf. Technol., Ghent Univ., Ghent, Belgium, 2013.
  70. A. Bekasiewicz, S. Koziel, and J. W. Bandler, ''Low-cost multi-objective design of compact microwave structures using domain patching,'' in IEEE MTT-S Int. Microw. Symp. Dig., San Francisco, CA, USA, May 2016, pp. 1-3. otwiera się w nowej karcie
  71. S. Arlot and A. Celisse, ''A survey of cross-validation procedures for model selection,'' Statist. Surv., vol. 4, pp. 40-79, 2010. otwiera się w nowej karcie
  72. Y.-C. Chen, S.-Y. Chen, and P. Hsu, ''Dual-band slot dipole antenna fed by a coplanar waveguide,'' in Proc. IEEE Antennas Propag. Soc. Int. Symp., Jul. 2006, pp. 3589-3592, doi: 10.1109/APS.2006.1711396. otwiera się w nowej karcie
  73. M. Qudrat-E-Maula and L. Shafai, ''A dual band microstrip dipole antenna,'' in Proc. 16th Int. Symp. Antenna Technol. Appl. Electromagn. (ANTEM), Victoria, BC, Canada, Jul. 2014, pp. 1-2. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 12 razy

Publikacje, które mogą cię zainteresować

Meta Tagi