On joint order and bandwidth selection for identification of nonstationary autoregressive processes - Publikacja - MOST Wiedzy

Wyszukiwarka

On joint order and bandwidth selection for identification of nonstationary autoregressive processes

Abstrakt

When identifying a nonstationary autoregressive process, e.g. for the purpose of signal prediction or parametric spectrum estimation, two important decisions must be taken. First, one should choose the appropriate order of the autoregressive model, i.e., the number of autoregressive coefficients that will be estimated. Second, if identification is carried out using the local estimation technique, such as the localized version of the method of least squares, one should select the most appropriate estimation bandwidth, i.e., the effective width of the local data window used for the purpose of parameter tracking. The paper presents the first unified treatment of the problem of joint order and bandwidth selection. Two solutions to this problem are examined, first based on the predictive least squares principle, and second exploiting the suitably modified Akaike’s final prediction error statistic. It is shown that the best results are obtained if the two approaches mentioned above are combined.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Pełna treść

pobierz publikację
pobrano 6 razy

Licencja

Copyright (EURASIP 2017)

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
materiały konferencyjne indeksowane w Web of Science
Tytuł wydania:
25th European Signal Processing Conference (EUSIPCO 2017) strony 1505 - 1509
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Niedźwiecki M., Ciołek M..: On joint order and bandwidth selection for identification of nonstationary autoregressive processes, W: 25th European Signal Processing Conference (EUSIPCO 2017), 2017, IEEE,.
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.23919/eusipco.2017.8081451
Bibliografia: test
  1. T. Wada, M. Jinnouchi, and Y. Matsumura, "Application of autoregres- sive modelling for the analysis of clinical and other biological data," Ann. Inst. Statist. Math., vol. 40, pp. 211-227, 1998. otwiera się w nowej karcie
  2. V.K. Jirsa and A.R. McIntosh, Eds., Handbook of Brain Connectivity, Springer-Verlag, 2007. otwiera się w nowej karcie
  3. N. Channouf, P. L'Ecuyer, A. Ingolfsson, and A.N. Avramidis, "The application of forecasting techniques to modeling emergency medical system calls in Calgary, Alberta," Health Care Manag. Sci., vol. 10, pp. 25-45, 2007. otwiera się w nowej karcie
  4. R. Takalo, H. Hytti, H. Ihalainen, and A. Sohlberg, Adaptive autoregres- sive model for reduction of noise in SPECT, Comp. Math. Methods in Medicine, vol. 2015, 9 p., 2015. otwiera się w nowej karcie
  5. K.E. Baddour and N.C. Beaulieu, "Autoregressive models for fading channel simulation," IEEE Trans. Wireless Comm., vol. 4, pp. 1650- 1662, 2005. otwiera się w nowej karcie
  6. J.F. Hayes and T.V.J. Ganesh Babu, Modeling and Analysis of Telecom- munication Networks, Wiley, 2004. otwiera się w nowej karcie
  7. C. Li and R.L. Nowack, "Application of autoregressive extrapolation to seismic tomography," Bull. Seism. Soc. Amer., vol. 94, pp. 1456?-1466, 2004. otwiera się w nowej karcie
  8. P. Lesage, F. Glangeaud, and J. Mars, "Applications of autoregressive models and time-frequency analysis to the study of volcanic tremor and long-period events," J. Volc. Geotherm. Res., vol. 114, pp. 391?-417, 2002. otwiera się w nowej karcie
  9. D. Brillinger, E.A. Robinson, and F.P. Schoenberg, Eds., Time Series Analysis and Applications to Geophysical Systems, Springer, 2012. otwiera się w nowej karcie
  10. H. Akaike, "A new look at the statistical model identification," IEEE Trans. Automat. Contr., vol. 19, pp. 716-723, 1974. otwiera się w nowej karcie
  11. G. Schwarz, "Estimating the dimension of a model," Ann. Statist., vol. 6, pp. 461-464, 1978. otwiera się w nowej karcie
  12. J. Rissanen, "Modeling by shortest data descriptiona," Automatica, vol. 14, pp. 465-658, 1978. otwiera się w nowej karcie
  13. M. Niedźwiecki, "On the localized estimators and generalized Akaike's criteria," IEEE Trans. Automat. Contr., vol. 29, pp. 970-983, 1984. otwiera się w nowej karcie
  14. M. Niedźwiecki, "Bayesian-like autoregressive spectrum estimation in the case of unknown process order," IEEE Trans. Automat. Contr., vol. 30, pp. 950-961, 1985. otwiera się w nowej karcie
  15. A.P. Dawid, "Present position and potential developments: some per- sonal view, statistical theory, the prequential approach," J. Roy. Statist. Soc. A, vol. 147, pp. 278-292, 1984. otwiera się w nowej karcie
  16. M. Niedźwiecki, "Identification of nonstationary stochastic systems using parallel estimation schemes," IEEE Trans. Automat. Contr., vol. 35, pp. 329-334, 1990. otwiera się w nowej karcie
  17. M. Niedźwiecki, "Multiple model approach to adaptive filtering,", IEEE Trans. Signal Process., vol. 40, pp. 470-474, 1992. otwiera się w nowej karcie
  18. A. Goldenshluger and A. Nemirovski, "On spatial adaptive estimation of nonparametric regression," Math. Meth. Stat., vol. 6, pp. 135-170, 1997.
  19. V. Katkovnik, "A new method for varying adaptive bandwidth selection," IEEE Trans. Signal Process., vol. 47, pp. 2567-2571, 1999. otwiera się w nowej karcie
  20. L. Stanković, "Performance analysis of the adaptive algorithm for bias- to-variance tradeoff," IEEE Trans. Signal Process., vol. 52, pp. 1228- 1234, 2004. otwiera się w nowej karcie
  21. M. Niedźwiecki, "Locally adaptive cooperative Kalman smoothing and its application to identification of nonstationary stochastic systems," IEEE Trans. Signal Process., vol. 60, pp. 48-59, 2012. otwiera się w nowej karcie
  22. M. Niedźwiecki, M. Ciołek, and Y. Kajikawa, "On adaptive selection of estimation bandwidth for analysis of locally stationary multivariate processes," ICASSP 2016 -Proc. 2016 IEEE Int. Conf. Acoust. Speech Sign. Process., Shanghai, China, pp. 4860-4864, 2016. otwiera się w nowej karcie
  23. R. Dahlhaus, "Locally stationary processes," Handbook Statist., vol. 25, pp. 1-37, 2012. otwiera się w nowej karcie
  24. M. Niedźwiecki, Identification of Time-varying Processes, Wiley, 2000. otwiera się w nowej karcie
  25. V. Peterka, "A square root filter for real time multivariate regression," Kybernetika, vol. 11, 53-67, 1975.
  26. D.T.L. Lee, M. Morf, and B. Friedlander, "Recursive least-squares ladder estimation algorithms," IEEE Trans. Circuits Syst., vol. 28, pp. 467-481, 1981. otwiera się w nowej karcie
  27. A. H. Sayed, Fundamentals of Adaptive Filtering, Wiley, 2003. otwiera się w nowej karcie
  28. J. Rissanen and V. Wertz, "Structure estimation by accumulated predic- tion error criterion," 7th IFAC Symposium on Identification and System Parameter Estimation, York, U.K., pp. 757-759, 1985. otwiera się w nowej karcie
  29. J. Rissanen, "A predictive least squares principle," IMA J. Math. Control Inform., Vol. 3, pp. 211-222, 1986. otwiera się w nowej karcie
  30. H. Akaike, "Statistical predictor identification," Ann. Inst. Statist. Math., vol. 32, pp. 203-217, 1970. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 27 razy

Publikacje, które mogą cię zainteresować

Meta Tagi