Ozone nanobubble technology as a novel AOPs for pollutants degradation under high salinity conditions - Publikacja - MOST Wiedzy

Wyszukiwarka

Ozone nanobubble technology as a novel AOPs for pollutants degradation under high salinity conditions

Abstrakt

Conventional water treatment systems frequently exhibit diminished efficiency at high salinity - a significant issue especially for real industrial effluents - mostly due to the creation of intricate structures between pollutants and salts. One of the primary obstacles associated with high salinity conditions is the generation of by-products that pose additional hurdles for treatment. In this work, we have investigated the novel advanced oxidation process a so-called ozone nanobubble technology for degradation of the pollutants at high salinity conditions. The mass transfer is often the rate-limiting step in gas-liquid process and the poor rate of mass transfer diminishes the overall efficacy. One of the primary disadvantages associated with ozone is its restricted solubility and instability when dissolved in an aqueous solution. These characteristics impose limitations on its potential applications and need the use of specialized systems to facilitate gas-liquid interaction. In this work, we have also suggested enhancing the ozonation process through the utilization of ozone nanobubbles. The findings of our experiment and subsequent analysis indicate that the presence of nanobubbles enhances the process of ozonation through three key mechanisms: (i) an increased mass transfer coefficient, (ii) a higher rate of reactive oxygen species (ROS) generation attributed to the charged interface, and (iii) the nanobubble interface serving as an active surface for chemical reactions. The predicted mass transfer coefficients were found to range from 3 to 3.5 min−1, a value that is notably greater than that seen for microbubbles. The study showcased the degradation of methylene blue dye through the utilization of ozone nanobubbles, which exhibited a much higher rate of dye degradation compared to ozone microbubbles. The confirmation of the radical degradation mechanism was achieved by the utilization of electron spin resonance (ESR) measurements. The developed process has high potential for application in industrial scale textile wastewater treatment.

Cytowania

  • 3

    CrossRef

  • 0

    Web of Science

  • 4

    Scopus

Autorzy (4)

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
WATER RESEARCH nr 263,
ISSN: 0043-1354
Język:
angielski
Rok wydania:
2024
Opis bibliograficzny:
Koundle P., Nirmalkar N., Momotko M., Boczkaj G.: Ozone nanobubble technology as a novel AOPs for pollutants degradation under high salinity conditions// WATER RESEARCH -Vol. 263, (2024), s.122148-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.watres.2024.122148
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 37 razy

Publikacje, które mogą cię zainteresować

Meta Tagi