Parallelization of large vector similarity computations in a hybrid CPU+GPU environment - Publikacja - MOST Wiedzy

Wyszukiwarka

Parallelization of large vector similarity computations in a hybrid CPU+GPU environment

Abstrakt

The paper presents design, implementation and tuning of a hybrid parallel OpenMP+CUDA code for computation of similarity between pairs of a large number of multidimensional vectors. The problem has a wide range of applications, and consequently its optimization is of high importance, especially on currently widespread hybrid CPU+GPU systems targeted in the paper. The following are presented and tested for computation of all vector pairs: tuning of a GPU kernel with consideration of memory coalescing and using shared memory, minimization of GPU memory allocation costs, optimization of CPU–GPU communication in terms of size of data sent, overlapping CPU–GPU communication and kernel execution, concurrent kernel execution, determination of best sizes for data batches processed on CPUs and GPUs along with best GPU grid sizes. It is shown that all codes scale in hybrid environments with various relative performances of compute devices, even for a case when comparisons of various vector pairs take various amounts of time. Tests were performed on two high-performance hybrid systems with: 2 x Intel Xeon E5-2640 CPU + 2 x NVIDIA Tesla K20m and latest generation 2 x Intel Xeon CPU E5-2620 v4 + NVIDIA’s Pascal generation GTX 1070 cards. Results demonstrate expected improvements and beneficial optimizations important for users incorporating such types of computations into their parallel codes run on similar systems.

Cytowania

  • 1 1

    CrossRef

  • 0

    Web of Science

  • 1 5

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 1534 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
JOURNAL OF SUPERCOMPUTING nr 74, strony 768 - 786,
ISSN: 0920-8542
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Czarnul P.: Parallelization of large vector similarity computations in a hybrid CPU+GPU environment// JOURNAL OF SUPERCOMPUTING. -Vol. 74, nr. 2 (2018), s.768-786
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s11227-017-2159-7
Weryfikacja:
Politechnika Gdańska

wyświetlono 1984 razy

Publikacje, które mogą cię zainteresować

Meta Tagi