Performance-Based Nested Surrogate Modeling of Antenna Input Characteristics - Publikacja - MOST Wiedzy

Wyszukiwarka

Performance-Based Nested Surrogate Modeling of Antenna Input Characteristics

Abstrakt

Utilization of electromagnetic (EM) simulation tools is mandatory in the design of contemporary antenna structures. At the same time, conducting designs procedures that require multiple evaluations of the antenna at hand, such as parametric optimization or yield-driven design, is hindered by a high cost of accurate EM analysis. To certain extent, this issue can be addressed by utilization of fast replacement models (also referred to as surrogates). Unfortunately, due to curse of dimensionality, traditional data-driven surrogate modeling methods are limited to antenna structures described by a few parameters with relatively narrow parameter ranges. This is by no means sufficient given the complexity of modern designs. In this paper, a novel technique for surrogate modeling of antenna structures is proposed. It involves a construction of two levels of surrogates, both realized as kriging interpolation models. The first model is based on a set of reference designs optimized for selected performance figures. It is used to establish a domain for the final (second-level) surrogate. This formulation permits efficient modeling within wide ranges of antenna geometry parameters and wide ranges of performance figures (e.g., operating frequencies). At the same time, it allows uniform allocation of training data samples in a straightforward manner. Our approach is demonstrated using two microstrip antenna examples and compared to conventional kriging and radial basis function modeling. Application examples for antenna optimization are also provided along with experimental validation.

Cytowania

  • 0

    CrossRef

  • 1 2

    Web of Science

  • 0

    Scopus

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION nr 67, strony 2904 - 2918,
ISSN: 0018-926X
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Kozieł S., Pietrenko-Dąbrowska A.: Performance-Based Nested Surrogate Modeling of Antenna Input Characteristics// IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. -Vol. 67, iss. 5 (2019), s.2904-2918
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/tap.2019.2896761
Bibliografia: test
  1. W.J. Liao, C.Y. Hsieh, B.Y. Dai, and B.R. Hsiao, "Inverted-F/slot integrated dual-band four-antenna system for WLAN access point," IEEE Ant. Wireless Prop. Lett., vol. 14, pp. 847-850, 2015. otwiera się w nowej karcie
  2. I.B. Vendik, A. Rusakov, K. Kanjanasit, J. Hong, and D. Filonov, "Ultrawideband (UWB) planar antenna with single-, dual-and triple-band notched characteristic based on electric ring resonator," IEEE Ant. Wireless Prop. Lett., vol. 16, pp. 1597-1600, 2017. otwiera się w nowej karcie
  3. L. Zhang, S. Gao, Q. Luo, P.R. Young, and Q. Li, "Wideband loop antenna with electronically switchable circular polarization," IEEE Ant. Wireless Prop. Lett., vol. 16, pp. 242-245, 2017. otwiera się w nowej karcie
  4. J. Wu and K. Sarabandi, "Compact omnidirectional circularly polarized antenna," IEEE Trans. Ant. Prop., vol. 65, no. 4, pp. 1550-1557, 2017. otwiera się w nowej karcie
  5. A. Lakbakhsh, M.U. Afzal, and K.P. Esselle, "Multiobjective particle swarm optimization to design a time-delay equalizer metasurface for an electromagnetic band-gap resonator antenna," IEEE Ant. Wireless Prop. Lett., vol. 16, pp. 915-915, 2017. otwiera się w nowej karcie
  6. J. Zhang, C. Zhang, F. Feng, W. Zhang, J. Ma, and Q.J. Zhang, "Polynomial chaos-based approach to yield-driven EM optimization," IEEE Trans. Microwave Theory Tech., vol. 66, no. 7, pp. 3186-3199, 2018. otwiera się w nowej karcie
  7. A.S.O. Hassan, H.L. Abdel-Malek, A.S.A. Mohamed, T.M. Abuelfadl, and A.E. Elqenawy, "Statistical design centering of RF cavity linear accelerator via non-derivative trust region optimization," IEEE Int. Conf. Numerical EM Multiphysics Modeling Opt. (NEMO), pp. 1-3, 2015. otwiera się w nowej karcie
  8. A. Kouassi, N. Nguyen-Trong, T. Kaufmann, S. Lallechere, P. Bonnet, and C. Fumeaux, "Reliability-aware optimization of a wideband antenna," IEEE Trans. Ant. Prop., vol. 64, no. 2, pp. 450-460, 2016. otwiera się w nowej karcie
  9. J. Nocedal and S. Wright, Numerical Optimization, 2 nd edition, Springer, New York, 2006. otwiera się w nowej karcie
  10. A. Darvish and A. Ebrahimzadeh, "Improved fruit-fly optimization algorithm and its applications in antenna array synthesis," IEEE Trans. Ant. Prop., vol. 66, no. 4, pp. 1756-1766, 2018. otwiera się w nowej karcie
  11. S. K. Goudos, K. Siakavara, T. Samaras, E. E. Vafiadis, and J. N. Sahalos, "Self-adaptive differential evolution applied to real-valued antenna and microwave design problems," IEEE Trans. Antennas Propag., vol. 59, no. 4, pp. 1286-1298, Apr. 2011. otwiera się w nowej karcie
  12. J. Wang, X.S. Yang, and B.Z. Wang, "Efficient gradient-based optimization of pixel antenna with large-scale connections," IET Microwaves Ant. Prop., vol. 12, no. 3, pp. 385-389, 2018. otwiera się w nowej karcie
  13. S. Koziel and A. Bekasiewicz, "Rapid design optimization of antennas using variable-fidelity EM models and adjoint sensitivities," Eng. Comp., vol. 33, no. 7, pp. 2007-2018, 2016. otwiera się w nowej karcie
  14. J. Zhu, J.W. Bandler, N.K. Nikolova, and S. Koziel, "Antenna optimization through space mapping," IEEE Transactions on Antennas and Propagation, vol. 55, no. 3, pp. 651-658, March 2007. otwiera się w nowej karcie
  15. S. Koziel and S. Ogurtsov, Antenna design by simulation-driven optimization. Surrogate-based approach. Springer, New York, 2014. otwiera się w nowej karcie
  16. S. Koziel and L. Leifsson, "Simulation-driven design by knowledge- based response correction techniques," Springer, 2016. otwiera się w nowej karcie
  17. S. Koziel and S.D. Unnsteinsson "Expedited design closure of antennas by means of trust-region-based adaptive response scaling," IEEE Antennas Wireless Prop. Lett., vol. 17, no. 6, pp. 1099-1103, 2018. otwiera się w nowej karcie
  18. Y. Su, J. Lin, Z. Fan, and R. Chen, "Shaping optimization of double reflector antenna based on manifold mapping," Int. Applied Computational Electromagnetic Society Symp. (ACES), pp. 1-2, 2017.
  19. J.A. Easum, J. Nagar, and D.H. Werner, "Multi-objective surrogate- assisted optimization applied to patch antenna design," Int. Symp. Ant. Prop., pp. 339-340, San Diego, USA, 2017. otwiera się w nowej karcie
  20. D.I.L. de Villiers, I. Couckuyt, and T. Dhaene, "Multi-objective optimization of reflector antennas using kriging and probability of improvement," Int. Symp. Ant. Prop., pp. 985-986, San Diego, USA, 2017. otwiera się w nowej karcie
  21. S. Koziel, "Fast simulation-driven antenna design using response-feature surrogates," Int. J. RF & Micr. CAE, vol. 25, no. 5, pp. 394-402, 2015. otwiera się w nowej karcie
  22. J.L. Chávez-Hurtado and J.E. Rayas-Sánchez, "Polynomial-based surrogate modeling of RF and microwave circuits in frequency domain exploiting the multinomial theorem," IEEE Trans. Microwave Theory Tech., vol. 64, no. 12, pp. 4371-4381, 2016. otwiera się w nowej karcie
  23. T.W. Simpson, J.D. Pelplinski, P.N. Koch, and J.K. Allen, "Metamodels for computer-based engineering design: survey and recommendations", Engineering with Computers, vol. 17, pp. 129-150, 2001. otwiera się w nowej karcie
  24. J.P. Jacobs, "Characterization by Gaussian processes of finite substrate size effects on gain patterns of microstrip antennas," IET Microwaves Ant. Prop., vol. 10, no. 11, pp. 1189-1195, 2016. otwiera się w nowej karcie
  25. H. Kabir, Y. Wang, M. Yu, and Q.J. Zhang, "Neural network inverse modeling and applications to microwave filter design," IEEE Trans. Microwave Theory Tech., vol. 56, no. 4, , pp. 867-879, April 2008. otwiera się w nowej karcie
  26. A.J. Smola and B. Schölkopf, "A tutorial on support vector regression," Statistics and Computing, vol. 14, no. 3, pp. 199-222, Aug. 2004. otwiera się w nowej karcie
  27. I. Couckuyt, "Forward and inverse surrogate modeling of computationally expensive problems," Ph.D. Thesis, Ghent University, 2013.
  28. S. Koziel and A. Bekasiewicz, "On reduced-cost design-oriented constrained surrogate modeling of antenna structures," IEEE Ant. Wireless Prop. Lett., vol. 16, pp. 1618-1621, 2017. otwiera się w nowej karcie
  29. S. Koziel and A.T. Sigurdsson, "Triangulation-based constrained surrogate modeling of antennas," IEEE Trans. Ant. Prop., vol. 66, no. 8, pp. 4170-4179, 2017. otwiera się w nowej karcie
  30. S. Leary, A. Bhaskar, and A. Keane, "Optimal orthogonal-array-based latin hypercubes," J. Applied Statistics, vol. 30, no. 5, pp. 585-598, 2003. otwiera się w nowej karcie
  31. T.J. Santner, B.J. Williams, and W.I. Notz, "Space-filling designs for computer experiments," In The design and analysis of computer experiments, Springer Series in Statistics, pp. 121-161, Springer, New York, 2003. otwiera się w nowej karcie
  32. I. Steponavice, M. Shirazi-Manesh, R.J. Hyndman, K Smith-Miles, and L. Villanova, "On sampling methods for costly multi-objective black-box optimization," In Advances in Stochastic and Deterministic Global Optimization, pp. 273-296, Springer, New York, 2016. otwiera się w nowej karcie
  33. W. Ponweiser, T. Wagner, D. Biermann, and M. Vincze, "Multiobjective optimization on a limited budget of evaluations using model-assisted S- metric selection," Int. Conf. Parallel Problem Solving from Nature, pp. 784-794, 2008. otwiera się w nowej karcie
  34. B. Beachkofski and R. Grandhi, "Improved distributed hypercube sampling," American Institute of Aeronautics and Astronautics, paper AIAA 2002-1274, 2002. otwiera się w nowej karcie
  35. Y.-C. Chen, S.-Y. Chen, and P. Hsu, "Dual-band slot dipole antenna fed by a coplanar waveguide," IEEE Int. Symp. Ant. Prop., pp. 3589-3592, 2006.
  36. N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidynathan, and P.K. Tucker, "Surrogate-based analysis and optimization," Progress in Aerospace Sciences, vol. 41, no. 1, pp. 1-28, Jan. 2005. otwiera się w nowej karcie
  37. Slawomir Koziel received the M.Sc. and Ph.D. degrees in electronic engineering from Gdansk University of Technology, Poland, in 1995 and 2000, respectively. He also received the M.Sc. degrees in theoretical physics and in mathematics, in 2000 and 2002, respectively, as well as the PhD in mathematics in 2003, from the University of Gdansk, Poland. He is currently a Professor with the School of Science and Engineering, Reykjavik University, Iceland. His research interests include CAD and modeling of microwave and antenna structures, simulation-driven design, surrogate-based optimization, space mapping, circuit theory, analog signal processing, evolutionary computation and numerical analysis. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 30 razy

Publikacje, które mogą cię zainteresować

Meta Tagi