Photocatalytic Decomposition of Air Pollutants using Electrodeposited Photocatalysts on Stainless Steel - Publikacja - MOST Wiedzy


Photocatalytic Decomposition of Air Pollutants using Electrodeposited Photocatalysts on Stainless Steel


The aim of research was to develop an immobilization method for photocatalysts, which is an alternative to the sol-gel or dip coating methods and can be simply scaled up for technical applications. The investigated photocatalyst was TiO2, which was electrochemically deposited onto a cathode made of stainless steel. This deposited film was photocatalytically active. In order to enhance the photoactivity of the TiO2 film, commercially available P25 photocatalyst nanoparticles were occluded into the film. The effect of deposition current density as well as the amount of occluded nanoparticles on the photocatalytic activity and photoelectrochemical behavior was investigated. The photocatalytic activity was evaluated in an UV-LED reactor. The decomposition rate of toluene and cyclohexane in air was examined for all prepared stainless steel-photocatalyst composites. It was observed that deposits prepared with 5 g dm-3 of P25 in the deposition bath showed the best photocatalytic activity and highest photocurrent.


  • 0


  • 0

    Web of Science

  • 0


Cytuj jako

Pełna treść

pobierz publikację
pobrano 4 razy
Wersja publikacji
Accepted albo Published Version
Copyright (Polish Journal of Environmental Studies 2019)

Słowa kluczowe

Informacje szczegółowe

Publikacja w czasopiśmie
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
ISSN: 1230-1485
Rok wydania:
Opis bibliograficzny:
Haenel A., Janczarek M., Lieder M., Hupka J.: Photocatalytic Decomposition of Air Pollutants using Electrodeposited Photocatalysts on Stainless Steel// POLISH JOURNAL OF ENVIRONMENTAL STUDIES. -Vol. 28, nr. 3 (2019), s.1157-1164
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.15244/pjoes/81558
Bibliografia: test
  1. TARANTO J., FROCHOT D., PICHAT P. Photocatalytic air purification: Comparative efficacy and pressure drop of a TiO 2 -coated thin mesh and a honeycomb monolith at high air velocities using a 0.4 m 3 close-loop reactor. Sep. Purif. Technol., 67 (2), 187, 2009. otwiera się w nowej karcie
  2. HÄNEL A., MOREŃ P., ZALESKA A., HUPKA J. Photocatalytic activity of TiO 2 immobilized on glass beads. Physicochem. Probl. Miner. Process., 45, 49, 2010.
  3. ZALESKA A., HÄNEL A., NISCHK M. Photocatalytic air purification. Recent Paten. Eng., 4 (3), 200, 2010. otwiera się w nowej karcie
  4. ZMUDZIŃSKI W. Removal of o-Cresol from Water by Adsorption/Photocatalysis. Pol. J. Environ. Stud., 19 (6), 1353, 2010.
  5. POZZO R.L., BALTANAS M.A., and CASSANO A.E. Supported titanium oxide as photocatalyst in water decontamination: State of the art. Catal. Today, 39 (3), 219, 1997. otwiera się w nowej karcie
  6. ZHANG Y., XIONG X., HAN Y., ZHANG X., SHEN F., DENG S., XIAO H., YANG X., YANG G., and PENG H. Photoelectrocatalytic degradation of recalcitrant organic pollutants using TiO 2 film electrodes: An overview. Chemosphere, 88 (2), 145, 2012. otwiera się w nowej karcie
  7. LEE W., PARK S.-J. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem. Rev. (Washington, DC, U. S.), 114 (15), 7487, 2014.
  8. ZWILLING V., AUCOUTURIER M., DARQUE- CERETTI E. Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochim. Acta, 45 (6), 921, 1999. otwiera się w nowej karcie
  9. JUN Y., PARK J.H., KANG M.G. The preparation of highly ordered TiO 2 nanotube arrays by an anodization method and their applications. Chem. Commun., 48 (52), 6456, 2012. otwiera się w nowej karcie
  10. RANI S., ROY S.C., PAULOSE M., VARGHESE O.K., MOR G.K., KIM S., YORIYA S., LATEMPA T.J., GRIMES C. Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys. Chem. Chem. Phys., 12 (12), 2780, 2010.
  11. FENG Z.-S., CHEN J.-J., ZHANG C., ZHAO N., LIANG Z. Formation of Al 2 O 3 -TiO 2 composite oxide films on aluminum foil by cathodic electrodeposition and anodizing. Ceram. Int., 38 (3), 2501, 2012.
  12. ERTEKIN Z., TAMER U., PEKMEZ K. Cathodic electrochemical deposition of Magnéli phases Ti n O 2n-1 thin Sample (-) otwiera się w nowej karcie
  13. films at different temperatures in acetonitrile solution. Electrochim. Acta, 163, 77, 2015. otwiera się w nowej karcie
  14. KAVAN L. Nanomaterials based on carbon and Ti (IV) oxides: Some aspects of their electrochemistry. Int. J. Nanotech., 9 (8-9), 652, 2012. otwiera się w nowej karcie
  15. CHIGANE M., SHINAGAWA T. Preparation of Thick Titanium Dioxide Films by Repeated Electrolysis- Calcination for Dye-Sensitized Solar Cells. J. Electrochem. Soc., 161 (3), E40, 2014. otwiera się w nowej karcie
  16. WESSELS K., WARK M., OEKERMANN T. Efficiency improvement of dye-sensitized solar cells based on electrodeposited TiO 2 films by low temperature post- treatment. Electrochim. Acta, 55 (22), 6352, 2010. otwiera się w nowej karcie
  17. LIU L., MANDLER D., Sol-Gel Coatings by Electrochemical Deposition, in The Sol-Gel Handbook: Synthesis, Characterization and Applications; Levy D. and Zayat M., Eds., John Wiley & Sons: Weinheim, Volume 2, pp. 373, 2015.
  18. PIFFERI V., SPADAVECCHIA F., CAPPELLETTI G., PAOLI E.A., BIANCHI C.L., FALCIOLA L. Electrodeposited nano-titania films for photocatalytic Cr(VI) reduction. Catal. Today, 209, 8, 2013. otwiera się w nowej karcie
  19. CHENTHAMARAKSHAN C.R., DE TACCONI N.R., RAJESHWAR K., SHIRATSUCHI R. Immobilizing semiconductor particles by occlusion electrosynthesis in an oxide film matrix: The titania model case. Electrochem. Commun., 4 (11), 871, 2002. otwiera się w nowej karcie
  20. GEORGIEVA J. TiO 2 /WO 3 photoanodes with enhanced photocatalytic activity for air treatment in a polymer electrolyte cell. J. Solid State Electrochem., 16 (3), 1111, 2011. otwiera się w nowej karcie
  21. GEORGIEVA J., SOTIROPOULOS S., ARMYANOV S., PHILIPPIDIS N., POULIOS I. Photoelectrocatalytic activity of bi-layer TiO 2 /WO 3 coatings for the degradation of 4-chlorophenol: effect of morphology and catalyst loading. J. Appl. Electrochem., 41 (2), 173, 2011. otwiera się w nowej karcie
  22. ISHIZAKI H., ITO S. Electrochemical Fabrication of Titanium Oxide Film from an Aqueous Solution Containing Titanium Ion and Hydroxylamine. ECS Trans., 41 (4), 111, 2011. otwiera się w nowej karcie
  23. SAYAHI H., MOHSENZADEH F., HAMADANIAN M. Cost-effective fabrication of perdurable electrodeposited TiO 2 nano-layers on stainless steel electrodes applicable to photocatalytic degradation of methylene blue. Res. Chem. Intermed., 1, 2017. otwiera się w nowej karcie
  24. TRUONG Q.D., DIEN L.X., VO D.-V.N., LE T.S. Controlled synthesis of titania using water-soluble titanium complexes: A review. J. Solid State Chem., 251, 143, 2017. otwiera się w nowej karcie
  25. KAKIHANA M., KOBAYASHI M., TOMITA K., PETRYKIN V. Application of Water-Soluble Titanium Complexes as Precursors for Synthesis of Titanium- Containing Oxides via Aqueous Solution Processes. Bull. Chem. Soc. Jpn., 83 (11), 1285, 2010. otwiera się w nowej karcie
  26. ZHITOMIRSKY I., GAL-OR L., KOHN A., HENNICKE H.W. Electrodeposition of ceramic films from non-aqueous and mixed solutions. J. Mater. Sci., 30 (20), 5307, 1995. otwiera się w nowej karcie
  27. MÜHLEBACH J., MÜLLER K., SCHWARZENBACH G. Peroxo complexes of titanium. Inorg. Chem., 9, 2381, 1970. 27. BARD A.J., FAULKNER L.R. Electrochemical Methods -Fundamentals and Applications, 2 nd ed;
  28. THERESE G.H.A., KAMATH P.V. Electrochemical synthesis of metal oxides and hydroxides. Chem. Mater., 12 (5), 1195, 2000.
  29. HÄNEL A. Evaluation of cathode materials for the electrochemical photocatalyst deposition. PhD Interdiscipl. J., 1, 175, 2015. otwiera się w nowej karcie
  30. NISCHK M., MAZIERSKI P., GAZDA M., ZALESKA A. Ordered TiO 2 nanotubes: The effect of preparation parameters on the photocatalytic activity in air purification process. Appl. Catal., B, 144, 674, 2014. otwiera się w nowej karcie
  31. MIODUSKA J., ZIELIŃSKA-JUREK A., HUPKA J. Photocatalytical degradation of toluene and cyclohexane using LED illumination. Pol. J. Environ. Stud., 26 (3), 1159, 2017. otwiera się w nowej karcie
  32. HAN C., PELAEZ M., LIKODIMOS V., KONTOS A.G., FALARAS P., O'SHEA K., DIONYSIOU D.D. Innovative visible light-activated sulfur doped TiO 2 films for water treatment. Appl. Catal., B, 107 (1-2), 77, 2011. otwiera się w nowej karcie
  33. ARMAN S.Y., OMIDVAR H., TABAIAN S.H., SAJJADNEJAD M., FOULADVAND S., AFSHAR S. Evaluation of nanostructured S-doped TiO 2 thin films and their photoelectrochemical application as photoanode for corrosion protection of 304 stainless steel. Surf. Coat. Technol., 251 (25), 162, 2014. otwiera się w nowej karcie
  34. BARR T.L. An ESCA study of the termination of the passivation of elemental metals. J. Phys. Chem., 82 (16), 1801, 1978. otwiera się w nowej karcie
  35. YU Q.L. BROUWERS H.J.H. Indoor air purification using heterogeneous photocatalytic oxidation part I: Experimental study. Appl. Catal., B, 92, 454, 2009.
  36. WANG Y., HUANG Y., HO W., ZHANG L., ZOU Z., LEE S. Biomolecule-controlled hydrothermal synthesis of CNS-tridoped TiO 2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation. J. Hazard. Mater., 169 (1-3), 77, 2009.
  37. GEORGIEVA J., ARMYANOV S., VALOVA E., POULIOS I., SOTIROPOULOS S. Preparation and photoelectrochemical characterisation of electrosynthesised titanium dioxide deposits on stainless steel substrates. Electrochim. Acta, 51 (10), 2076, 2006. otwiera się w nowej karcie
  38. DROGOWSKA M., MÈNARD H., BROSSARD L. Electrooxidation of Stainless Steel AISI 304 in Carbonate Aqueous Solution at pH 8. J. Appl. Electrochem., 26 (2), 217, 1996. otwiera się w nowej karcie
  39. YANG Z., CHOI D., KERISIT S., ROSSO K.M., WANG D., ZHANG J., GRAFF G., LIU J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J. Power Sources, 192 (2), 588, 2009.
  40. YANG L., LIU Z., SHI J., HU H., SHANGGUAN W. Design consideration of photocatalytic oxidation reactors using eTiO 2 -coated foam nickels for degrading indoor gaseous formaldehyde. Catal. Today, 126 (3-4), 359, 2007.
Źródła finansowania:
  • PG 020538 NCN 2011/03/N/ST5/04394
Politechnika Gdańska

wyświetlono 75 razy

Publikacje, które mogą cię zainteresować

Meta Tagi