Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation - Publikacja - MOST Wiedzy

Wyszukiwarka

Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation

Abstrakt

This paper presents an algorithm for the measurement of the human heart rate, using photoplethysmography (PPG), i.e., the detection of the light at the skin surface. The signal from the PPG sensor is processed in time-domain; the peaks in the preprocessed and conditioned PPG waveform are detected by using a peak detection algorithm to find the heart rate in real time. Apart from the PPG sensor, the accelerometer is also used to detect body movement and to indicate the moments in time, for which the PPG waveform can be unreliable. This paper describes in detail the signal conditioning path and the modified algorithm, and it also gives an example of implementation in a resource-constrained wrist-wearable device. The algorithm was evaluated by using the publicly available PPG-DaLia dataset containing samples collected during real-life activities with a PPG sensor and accelerometer and with an ECG signal as ground truth. The quality of the results is comparable to the other algorithms from the literature, while the required hardware resources are lower, which can be significant for wearable applications.

Cytowania

  • 6

    CrossRef

  • 5

    Web of Science

  • 6

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 36 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
SENSORS nr 20,
ISSN: 1424-8220
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Wójcikowski M., Pankiewicz B.: Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation// SENSORS -Vol. 20,iss. 6 (2020), s.1783-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/s20061783
Bibliografia: test
  1. Rault, T.; Bouabdallah, A.; Challal, Y.; Marin, F. A survey of energy-efficient context recognition systems using wearable sensors for healthcare applications. Pervasive Mob. Comput. 2017, 37, 23-44. otwiera się w nowej karcie
  2. Szczepański, A.; Saeed, K. A Mobile Device System for Early Warning of ECG Anomalies. Sensors 2014, 14, 11031-11044, doi:10.3390/s140611031. otwiera się w nowej karcie
  3. Hertzman A B. Observations on the finger volume pulse recorded photoelectrically. Am. J. Physiol. 1937, 119, 334-335. otwiera się w nowej karcie
  4. Biswas, D.; Simões-Capela, N.; Van Hoof, C.; Van Helleputte, N.; Simues-Capela, N. Heart Rate Estimation from Wrist-Worn Photoplethysmography: A Review. IEEE Sensors J. 2019, 19, 6560-6570. otwiera się w nowej karcie
  5. Jacobson, M. Auto-threshold peak detection in physiological signals. In Proceedings of the 2001 otwiera się w nowej karcie
  6. Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey, 25-28 October 2001, doi:10.1109/IEMBS.2001.1017206. otwiera się w nowej karcie
  7. Pan J.; Tompkins W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng.1985, 32, 230-236, Mar. 1985, doi:10.1109/TBME.1985.325532. otwiera się w nowej karcie
  8. Du, P.; Kibbe, W.A.; Lin, S.M. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinform 2006, 22, 2059-2065. otwiera się w nowej karcie
  9. Benitez, D.; Gaydecki, P.; Zaidi, A.; Fitzpatrick, A.P. The use of the Hilbert transform in ECG signal analysis. Comput. Boil. Med. 2001, 31, 399-406, doi:10.1016/S0010-4825(01)00009-9. otwiera się w nowej karcie
  10. Aboy, M.; McNames, J.; Thong, T.; Tsunami, D.; Ellenby, M.; Goldstein, B. An Automatic Beat Detection Algorithm for Pressure Signals. IEEE Trans. Biomed. Eng. 2005, 52, 1662-1670, doi:10.1109/TBME.2005.855725. otwiera się w nowej karcie
  11. Tzallas, A.T.; Oikonomou, V.P.; I Fotiadis, D. Epileptic Spike Detection Using a Kalman Filter Based Approach. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August-3 September 2006, Vol. 1, pp. 501-504, doi:10.1109/IEMBS.2006.260780. otwiera się w nowej karcie
  12. Coast, D.A.; Stern, R.; Cano, G.G.; A Briller, S. An approach to cardiac arrhythmia analysis using hidden Markov models. IEEE Trans. Biomed. Eng. 1990, 37, 826-836, doi:10.1109/10.58593. otwiera się w nowej karcie
  13. Xue, Q.; Hu, Y.H.; Tompkins, W.J. Neural-network-based adaptive matched filtering for QRS detection. IEEE Trans. Biomed. Eng. 1992, 39, 317-329, doi: 10.1109/10.126604. otwiera się w nowej karcie
  14. Mashhadi, M.B.; Asadi, E.; Eskandari, M.; Kiani, S.; Marvasti, F.; Boloursaz, M. Heart Rate Tracking using Wrist-Type Photoplethysmographic (PPG) Signals during Physical Exercise with Simultaneous Accelerometry. IEEE Signal Process. Lett. 2015, 23, 227-231, doi:10.1109/LSP.2015.2509868. otwiera się w nowej karcie
  15. Salehizadeh, S.M.A.; Dao, D.; Bolkhovsky, J.; Cho, C.; Mendelson, Y.; Chon, K.H. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor. Sensors 2016, 16, 10. otwiera się w nowej karcie
  16. Reiss, A.; Indlekofer, I.; Schmidt, P.; Van Laerhoven, K. Deep PPG: Large-Scale Heart Rate Estimation with Convolutional Neural Networks. Sensors 2019, 19, 3079. otwiera się w nowej karcie
  17. Sumukha, B.N.; Kumar, R.C.; Bharadwaj, S.S.; George, K. Online peak detection in photoplethysmogram signals using sequential learning algorithm. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14-19 May 2017; pp. 1313-1320, doi:10.1109/IJCNN.2017.7966004. otwiera się w nowej karcie
  18. Vijaya, G.; Kumar, V.; Verma, H.K. ANN-based QRS-complex analysis of ECG. J. Med Eng. Technol. 1998, 22, 160-167, doi:10.3109/03091909809032534. otwiera się w nowej karcie
  19. Ghamari, M.; Castaneda, D.; Esparza, A.; Soltanpur, C.; Nazeran, H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int. J. Biosens. Bioelectron. 2018, 4, 195-202, doi:10.15406/ijbsbe.2018.04.00125. otwiera się w nowej karcie
  20. Scholkmann, F.; Boss, J.; Wolf, M. An Efficient Algorithm for Automatic Peak Detection in Noisy Periodic and Quasi-Periodic Signals. Algorithms 2012, 5, 588-603. 20. Nasal ALAR SpO2 Pulse Oximetry Sensor, Available online: https://www.pentlandmedical.co.uk/critical-care/nasal-alar-spo2-pulse-oximetry-sensor/ (accessed on 4 February 2020). otwiera się w nowej karcie
  21. Hamilton, P. Open source ECG analysis. Computers in Cardiology 2003, 101-104, doi: 10.1109/CIC.2002.1166717. otwiera się w nowej karcie
  22. Zhang, Z. Photoplethysmography-Based Heart Rate Monitoring in Physical Activities via Joint Sparse Spectrum Reconstruction. IEEE Trans. Biomed. Eng. 2015, 62, 1902-1910. otwiera się w nowej karcie
  23. Schack, T.; Muma, M.; Zoubir, A.M. Computationally efficient heart rate estimation during physical exercise using photoplethysmographic signals. In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO); otwiera się w nowej karcie
  24. Kos, Greece, 28 August-2 September 2017, pp. 2478-2481.
  25. Falter, M.; Budts, W.; Goetschalckx, K.; Cornelissen, V.; Buys, R.; Shcherbina, A.; Goessler, K.; Boudreaux, B.; Goris, J. Accuracy of Apple Watch Measurements for Heart Rate and Energy Expenditure in Patients With Cardiovascular Disease: Cross-Sectional Study. JMIR mHealth uHealth 2019, 7, e11889, doi:10.2196/11889. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 41 razy

Publikacje, które mogą cię zainteresować

Meta Tagi