Photovoltaic module temperature stabilization with the use of phase change materials - Publikacja - MOST Wiedzy

Wyszukiwarka

Photovoltaic module temperature stabilization with the use of phase change materials

Abstrakt

The worldwide growth of photovoltaics (PVs) has formed an exponential curve for more than four decades. During this period of time, PVs have evolved from a pure niche market of small-scale applications towards becoming a mainstream electricity source. The influence of temperature on the electrical parameters of crystalline silicon solar cells and solar modules is well described in the literature. In order to diminish these effects, it is useful to decrease the module temperature by removing the heat in a hybrid system that combines a PV module and thermal collector (T) into a photovoltaic–thermal (PV/T) system. Two types of PV/T systems are popular on the market: air cooled and water cooled. A relatively new solution is the use of phase change material (PCM) in order to pick up excess heat. PCMs absorb, store, and release large amounts of energy in the form of latent heat at constant temperature. Many innovative applications can be found for PCMs, which raise the efficiency of equipment, among other advantages. In the present paper, the experience of using PCMs for the stabilization of PV module temperature is presented. The results of these experiments are promising: for constant solar irradiance, the modified solar PV module (PV/PCM) heats up to a lower temperature than the unmodified PV module and the cheapest option is to apply 42–44 paraffin to the module without cooling, which made possible to lower the temperature of the module by 7 K. During the experiment, the lowered temperature was maintained for more than 5 h, allowing the PV module to work at a temperature close to the optimum one for the entire period of intense lighting.

Cytowania

  • 7 2

    CrossRef

  • 0

    Web of Science

  • 7 0

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 352 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
SOLAR ENERGY nr 150, strony 538 - 545,
ISSN: 0038-092X
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Klugmann-Radziemska E., Wcisło-Kucharek P.: Photovoltaic module temperature stabilization with the use of phase change materials// SOLAR ENERGY. -Vol. 150, (2017), s.538-545
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.solener.2017.05.016
Bibliografia: test
  1. Bhargava, A.K., Garg, H.P., Agarwal, R.K., 1991. Study of a hybrid solar system -solar air heater combined with solar cells. Energy Convers. Manage. 31, 471-479. otwiera się w nowej karcie
  2. Carlson, D., 1989. Low-cost power from thin-film PV. In: Electricity, Lund University Press, Lund.
  3. Cellura, M., Ciulla, G., Lo Brano, V., Marvuglia, A., Orioli, A, 2008. A photovoltaic panel coupled with a phase changing material heat storage system in hot climates. In: PLEA 2008-25th Conference on Passive and Low Energy Architecture, Dublin, October 2008.
  4. Farid, M.M., Khudhair, A.M., Khateeb, S.A., Al-Hallaj, S., 2004. A review on phase change energy storage: materials and applications. Energy Convers. Manage. 45, 1597-1615. otwiera się w nowej karcie
  5. Gibbs,B.M., Hasnain, S.M., 1995. DSC study of technical grade phase change heat storage materials for solar heating applications. In: Proceedings of the 1995
  6. ASME/JSME/JSEJ International Solar Energy Conference, Part 2.
  7. Gkouskos, Z., Tsoutsos, T., Kakouriotis, A., 2012. Integrating phase change materials to photovoltaics in a mediterranean region. In: 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, pp. 305-310. otwiera się w nowej karcie
  8. Green, M.A., 1992. Solar Cells. University of New South Wales, Kensington. Hadjieva, M., Kanev, S., Argirov, J., 1992. Thermophysical properties of some paraffins applicable to thermal energy storage. Sol. Energy Mater. Sol. Cells 27, 181-187. http://dx.doi.org/10.1016/0927-0248(92)90119-A. otwiera się w nowej karcie
  9. Hasan, A., McCormack, S.J., Huang, M.J., Norton, B., 2010. Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Sol. Energy 84, 1601-1612. http://dx.doi.org/10.1016/ j.solener.2010.06.010. otwiera się w nowej karcie
  10. Huang, M.J., Eames, P.C., Norton, B., 2004. Thermal regulation of building-integrated photovoltaics using phase change materials. Int. J. Heat Mass Transf. 47, 2715- 2733. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2003.11.015. otwiera się w nowej karcie
  11. Huang, M.J., Eames, P.C., Norton, B., 2006. Phase change materials for limiting temperature rise in building integrated photovoltaics. Sol. Energy 80, 1121- 1130. http://dx.doi.org/10.1016/j.solener.2005.10.006. otwiera się w nowej karcie
  12. Huld, T., Müller, R., Gambardella, A., 2012. A new solar radiation database for estimating PV performance in Europe and Africa. Sol. Energy 86, 1803-1815. otwiera się w nowej karcie
  13. EN ISO 6946:2007. Building components and building elements. Thermal resistance and thermal transmittance. Calculation method. otwiera się w nowej karcie
  14. Japs, E., Sonnenrein, G., Steube, J., Vrabec, J., Kenig, E., Krauter, S., 2013. Technical investigation of a photovoltaic module with integrated improved phase change material. In: 28th European Photovoltaic Solar Energy Conference and Exhibition, Paris 2013, pp. 500-502. otwiera się w nowej karcie
  15. Klugmann, E., Radziemska, E., 2000. Lewandowski, Influence of temperature on conversion efficiency of a solar module working in photovoltaic PV/T integrated system. In: 16th European Photovoltaic Solar Energy Conference and Exhibition, United Kingdom, Glasgow, 1-5 May 2000, pp. 2406-2409.
  16. Klugmann-Radziemska, E., Lewandowski, W. Polish Patent Office, Patent No. 203881: Integrated photovoltaic module with heat solar collector. otwiera się w nowej karcie
  17. Leenders, F., Schaap, A.B., Vander Ree, B.G.C., Van der Holden, W.G.J., 2000. Technology review on PV/thermal concepts. In: 16th European Photovoltaic Energy Conference, Glasgow, pp. 1976-1980.
  18. Malvi, C.S., Dixon-Hardy, D.W., Crook, R., 2011. Energy balance model of combined photovoltaic solar-thermal system incorporating phase change material. Sol. Energy 85, 1440-1446. http://dx.doi.org/10.1016/j.solener.2011.03.027. otwiera się w nowej karcie
  19. /W Photovoltaic Systems, 2010. White paper to explore a grand challenge for electricity from solar. U.S. Department of Energy.
  20. Radziemska, E., 2003. The effect of temperature on the power drop in crystalline silicon solar cells. Renewable Energy 28, 1-12. http://dx.doi.org/10.1016/ S0960-1481(02)00015-0. otwiera się w nowej karcie
  21. Radziemska, E., 2003. The effect of temperature on the power drop in crystalline silicon solar cells. Renewable Energy 28, 1-12. otwiera się w nowej karcie
  22. Radziemska, E., 2007. PVT -hybrid photovoltaic -thermal solar systems. In: XXXI International Conference of IMAPS Poland Chapter, Krasiczyn, 23-26 September 2007, pp. 433-436.
  23. Radziemska, E., Klugmann, E., 2002. Thermally affected parameters of the current- voltage characteristics of silicon photocell. Energy Convers. Manage. 43 (14), 1889-1900. otwiera się w nowej karcie
  24. Radziemska, E., Klugmann, E., 2006. Photovoltaic maximum power point varying with illumination and temperature. J. Sol. Energy Eng., Trans. ASME 128, 34-39. otwiera się w nowej karcie
  25. Sopian, K. et al., 1996. Performance analysis of photovoltaic thermal air heaters. Energy Convers. Manage. 37, 1657-1670. otwiera się w nowej karcie
  26. Stamenic, L. et al., 2000. Novel microprocessor controlled real time MPPT for PV charging applications. In: Proc. of 16th European PV Solar Energy Conference and Exhibition, Glasgow, UK, p. 2434.
  27. Šúri, M., Huld, T.A., Dunlop, E.D., Ossenbrink, H.A., 2007. Potential of solar electricity generation in the European Union member states and candidate countries. Sol. Energy 81, 1295-1305. otwiera się w nowej karcie
  28. Tripanagnostopoulos, Y., Nousia, T.H., Souliotis, M., Yianoulis, P., 2002. Hybrid photovoltaic /thermal solar systems. Sol. Energy 72 (3), 217. otwiera się w nowej karcie
  29. Zalba, B., Marín, J.M., Cabeza, L.F., Mehling, H., 2003. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23, 251-283. otwiera się w nowej karcie
  30. Zondag, H.A. et al., 2002. The thermal and electrical yield of a PV-thermal collector. Sol. Energy 72 (2), 113. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 247 razy

Publikacje, które mogą cię zainteresować

Meta Tagi