Pilot scale degradation study of 16 selected volatile organic compounds by hydroxyl and sulfate radical based advanced oxidation processes - Publikacja - MOST Wiedzy

Wyszukiwarka

Pilot scale degradation study of 16 selected volatile organic compounds by hydroxyl and sulfate radical based advanced oxidation processes

Abstrakt

The studies of effective technologies for complete degradation of the volatile organic compounds (VOCs), are very important due to the high biotoxicity of the VOCs which makes the biological technologies ineffective. It also increases the risk of VOCs emission instead of their treatment when using open air biological technologies. In the present study, different types of Advanced Oxidation Processes (AOPs) were investigated for the degradation of several VOCs in a model pilot scale effluent, simulating effluents from bitumen production. The goal of this paper is to reach effective VOCs and wastewater degradation to make the bitumen production a cleaner process. O3, H2O2, O3/H2O2 (the so called peroxone), persulfate (PS) and peroxymonosulfate (PMS) were processes chosen for this work. Heat activation enhanced the total VOCs degradation in PS and PMS technologies, which achieved higher effectiveness than H2O2. Peroxone process at 40 °C achieved the highest efficiency of all processes studied needing only 60 min to completely degrade all compounds without any oxidation by-products. Sulfur containing VOCs (VSCs) were completely degraded in a shorter treatment time and nitrogen containing VOCs (VNCs) needed more time of treatment in all technologies studied. The preference of the hydroxyl and sulfate radicals for degradation of oxygen containing VOCs (OVOCs) had different behavior depending on the group of compounds and should be considered in future research for combined radical processes.

Cytowania

  • 1 5 2

    CrossRef

  • 0

    Web of Science

  • 1 5 0

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 149 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
JOURNAL OF CLEANER PRODUCTION nr 208, strony 54 - 64,
ISSN: 0959-6526
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Fernandes A., Makoś P., Khan J., Boczkaj G.: Pilot scale degradation study of 16 selected volatile organic compounds by hydroxyl and sulfate radical based advanced oxidation processes// JOURNAL OF CLEANER PRODUCTION. -Vol. 208, (2019), s.54-64
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.jclepro.2018.10.081
Bibliografia: test
  1. Alaton, I.A., Balcioglu, I.A., Bahnemann, D.W., 2002. Advanced oxidation of a reactive dyebath effluent: Comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Res. 36, 1143-1154. https://doi.org/10.1016/S0043- 1354(01)00335-9 otwiera się w nowej karcie
  2. Ali, F., Khan, J.A., Shah, N.S., Sayed, M., Khan, H.M., 2018. Carbamazepine degradation by UV and UV-assisted AOPs: Kinetics, mechanism and toxicity investigations. Process Saf. Environ. Prot. 117, 307-314. otwiera się w nowej karcie
  3. https://doi.org/10.1016/j.psep.2018.05.004 otwiera się w nowej karcie
  4. Alsheyab, M.A., Muñoz, A.H., 2006. Reducing the formation of trihalomethanes (THMs) by ozone combined with hydrogen peroxide (H2O2/O3). Desalination 194, 121-126. https://doi.org/10.1016/j.desal.2005.10.028 otwiera się w nowej karcie
  5. Ameta R, Kumar A, Punjabi PB, A.S., 2013. Advanced oxidation Processes: Basics and Principles, in: Rao DG, Senthilkumar R, Anthony Byrne J, F.S. (Ed.), Wastewater Treatment: Advanced Processes and Technologies. CRC Press and IWA publishing, USA, pp. 61-107. https://doi.org/10.1007/s13398-014-0173-7.2 otwiera się w nowej karcie
  6. Autelitano, F., Giuliani, F., 2018. Analytical assessment of asphalt odor patterns in hot mix asphalt production. J. Clean. Prod. 172, 1212-1223. otwiera się w nowej karcie
  7. https://doi.org/10.1016/j.jclepro.2017.10.248 otwiera się w nowej karcie
  8. Bahri, M., Mahdavi, A., Mirzaei, A., Mansouri, A., Haghighat, F., 2018. Integrated oxidation process and biological treatment for highly concentrated petrochemical effluents: A review. Chem. Eng. Process. -Process Intensif. 125, 183-196. https://doi.org/10.1016/j.cep.2018.02.002 otwiera się w nowej karcie
  9. Berndt, T., Böge, O., 2006. Formation of phenol and carbonyls from the atmospheric reaction of OH radicals with benzene. Phys. Chem. Chem. Phys. 8, 1205. https://doi.org/10.1039/b514148f otwiera się w nowej karcie
  10. Boczkaj, G., Fernandes, A., 2017. Wastewater treatment by means of Advanced Oxidation Processes at basic pH conditions: A review. Chem. Eng. J. 320, 608- 633. https://doi.org/10.1016/j.cej.2017.03.084 otwiera się w nowej karcie
  11. Boczkaj, G., Fernandes, A., Makoś, P., 2017. Study of Different Advanced Oxidation Processes for Wastewater Treatment from Petroleum Bitumen Production at Basic pH. Ind. Eng. Chem. Res. 56, 8806-8814. https://doi.org/10.1021/acs.iecr.7b01507 otwiera się w nowej karcie
  12. Boczkaj, G., Kamiński, M., Przyjazny, A., 2010. Process Control and Investigation of Oxidation Kinetics of Postoxidative Effluents Using Gas Chromatography with Pulsed Flame Photometric Detection (GC-PFPD). Ind Eng Chem Res 49, 12654- 12662. otwiera się w nowej karcie
  13. Boczkaj, G., Makoś, P., Przyjazny, A., 2016. Application of dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry (DLLME-GC-MS) for the determination of oxygenated volatile organic compounds in effluents from the production of petroleum bitumen. J. Sep. Sci. 39, 2604-2615. otwiera się w nowej karcie
  14. Boczkaj, G., Przyjazny, A., Kamiński, M., 2014. New Procedures for Control of Industrial Effluents Treatment Processes. Ind Eng Chem Res 56, 1503-1514. otwiera się w nowej karcie
  15. Brown, K.N., Espenson, J.H., 1996. Stepwise Oxidation of Thiophene and Its Derivatives by Hydrogen Peroxide Catalyzed by Methyltrioxorhenium(VII). Inorg. Chem. 35, 7211-7216. https://doi.org/10.1021/ic960607+ otwiera się w nowej karcie
  16. Chandrasekara Pillai, K., Kwon, T.O., Moon, I.S., 2009. Degradation of wastewater from terephthalic acid manufacturing process by ozonation catalyzed with Fe2+, H2O2 and UV light: Direct versus indirect ozonation reactions. Appl. Catal. B Environ. 91, 319-328. https://doi.org/10.1016/j.apcatb.2009.05.040 otwiera się w nowej karcie
  17. Chen, Z., Yu, X., Huang, X., Zhang, S., 2014. Prediction of reaction rate constants of hydroxyl radical with organic compounds. J. Chil. Chem. Soc. 59, 2252-2259. https://doi.org/10.4067/S0717-97072014000100003 otwiera się w nowej karcie
  18. Cheng, H.-H., Hsieh, C.-C., 2013. Removal of Aromatic Volatile Organic Compounds in the Sequencing Batch Reactor of Petroleum Refinery Wastewater Treatment Plant. CLEAN -Soil, Air, Water 00, n/a-n/a. https://doi.org/10.1002/clen.201100112 otwiera się w nowej karcie
  19. Devi, P., Das, U., Dalai, A.K., 2016. In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2016.07.032 otwiera się w nowej karcie
  20. Esplugas, S., Giménez, J., Contreras, S., Pascual, E., Rodríguez, M., 2002. Comparison of different advanced oxidation processes for phenol degradation. Water Res. 36, 1034-1042. https://doi.org/10.1016/S0043-1354(01)00301-3 otwiera się w nowej karcie
  21. Fernandes, A., Makos, P., Boczkaj, G., 2018. Treatment of bitumen post oxidative effluents by sulfate radicals based advanced oxidation processes ( S-AOPs ) under alkaline pH conditions. J. Clean. Prod. 195, 374-384. https://doi.org/10.1016/j.jclepro.2018.05.207 otwiera się w nowej karcie
  22. Furman, O.S., Teel, A.L., Watts, R.J., 2010. Mechanism of base activation of persulfate. Environ. Sci. Technol. 44, 6423-6428. https://doi.org/10.1021/es1013714 otwiera się w nowej karcie
  23. Gągol, M., Przyjazny, A., Boczkaj, G., 2018. Highly effective degradation of selected groups of organic compounds by cavitation based AOPs under basic pH conditions. Ultrason. Sonochem. 45, 257-266. https://doi.org/10.1016/j.ultsonch.2018.03.013 otwiera się w nowej karcie
  24. Gekhman, A.E., Stolyarov, I.P., Shestakov, A.F., Shilov, A.E., Moiseev, I.I., 2003. Oxidation of molecular nitrogen with hydrogen peroxide *. Russ.Chem.Bull., Int.Ed 52, 768-770. otwiera się w nowej karcie
  25. Ghanbari, F., Moradi, M., Moradi, M., 2016. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants : Review. Chem. Eng. J. https://doi.org/10.1016/j.cej.2016.10.064 otwiera się w nowej karcie
  26. Ghauch, A., Tuqan, A.M., Kibbi, N., 2012. Methylene blue discoloration by heated persulfate in aqueous solution. Chem. Eng. J. 197, 483-492. https://doi.org/10.1016/j.cej.2012.05.051 otwiera się w nowej karcie
  27. Ghiaci, M., Molaie, F., Sedaghat, M.E., Dorostkar, N., 2010. Metalloporphyrin covalently bound to silica. Preparation, characterization and catalytic activity in oxidation of ethyl benzene. Catal. Commun. 11, 694-699. https://doi.org/10.1016/j.catcom.2010.01.023 otwiera się w nowej karcie
  28. Glaze, W.H., Kangt, J., 1989. Advanced Oxidation Processes . Test of a Kinetic Model for the Oxidation of Organic Compounds with Ozone and Hydrogen Peroxide in a Semibatch Reactor. Ind. Eng. Chem. Res. 28, 1580-1587. https://doi.org/10.1021/ie00095a002 otwiera się w nowej karcie
  29. Goel, M., Hongqiang, H., Mujumdar, A.S., Ray, M.B., 2004. Sonochemical decomposition of volatile and non-volatile organic compounds -A comparative study. Water Res. 38, 4247-4261. https://doi.org/10.1016/j.watres.2004.08.008 otwiera się w nowej karcie
  30. Hariz, I. Ben, Halleb, A., Adhoum, N., Monser, L., 2013. Treatment of petroleum refinery sulfidic spent caustic wastes by electrocoagulation. Sep. Purif. Technol. 107, 150-157. https://doi.org/10.1016/j.seppur.2013.01.051 otwiera się w nowej karcie
  31. Huang, K.C., Zhao, Z., Hoag, G.E., Dahmani, A., Block, P. a., 2005. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere 61, 551-560. https://doi.org/10.1016/j.chemosphere.2005.02.032 otwiera się w nowej karcie
  32. Ike, I.A., Linden, K., Orbell, J.D., Duke, M., 2018. Critical review of the science and sustainability of persulphate advanced oxidation processes, Chemical Engineering Journal. Elsevier B.V. https://doi.org/10.1016/j.cej.2018.01.034 otwiera się w nowej karcie
  33. Katsoyiannis, I.A., Canonica, S., von Gunten, U., 2011. Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2. Water Res. 45, 3811-3822. otwiera się w nowej karcie
  34. https://doi.org/10.1016/j.watres.2011.04.038 otwiera się w nowej karcie
  35. Khan, J.A., He, X., Khan, H.M., Shah, N.S., Dionysiou, D.D., 2013. Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe 2+ , UV/S2O8 2-/Fe 2+ and UV/HSO5 -/Fe 2+ processes: A comparative study. Chem. Eng. J. 218, 376-383. https://doi.org/10.1016/j.cej.2012.12.055 otwiera się w nowej karcie
  36. Khan, J.A., He, X., Shah, N.S., Khan, H.M., Hapeshi, E., Fatta-Kassinos, D., Dionysiou, D.D., 2014. Kinetic and mechanism investigation on the photochemical degradation of atrazine with activated H2O2, S2O8 2-and HSO5 -. Chem. Eng. J. 252, 393-403. https://doi.org/10.1016/j.cej.2014.04.104 otwiera się w nowej karcie
  37. Khan, J.A., He, X., Shah, N.S., Sayed, M., Khan, H.M., Dionysiou, D.D., 2017. Degradation kinetics and mechanism of desethyl-atrazine and desisopropyl- atrazine in water with • OH and SO4 •− based-AOPs. Chem. Eng. J. 325, 485-494. https://doi.org/10.1016/j.cej.2017.05.011 otwiera się w nowej karcie
  38. Kim, S.B., Hong, S.C., 2002. Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst. Appl. Catal. B Environ. 35, 305-315. https://doi.org/10.1016/S0926-3373(01)00274-0 otwiera się w nowej karcie
  39. Kusic, H., Koprivanac, N., Bozic, A.L., 2006. Minimization of organic pollutant content in aqueous solution by means of AOPs: UV-and ozone-based technologies. Chem. Eng. J. 123, 127-137. https://doi.org/10.1016/j.cej.2006.07.011 otwiera się w nowej karcie
  40. Kwok, E.S.C., Atkinson, R., 1995. Estimation of hydroxyl radical reaction rate constants for gas phase organic compounds using a structure-reactivity relationship: An update. Atmos. Environ. 29, 1685-1695. https://doi.org/10.1016/1352-2310(95)00069-B otwiera się w nowej karcie
  41. Li, W., Niu, Q., Zhang, H., Tian, Z., Zhang, Y., Gao, Y., Li, Y.Y., Nishimura, O., Yang, M., 2014. UASB treatment of chemical synthesis-based pharmaceutical wastewater containing rich organic sulfur compounds and sulfate and associated microbial characteristics. Chem. Eng. J. 260, 55-63. https://doi.org/10.1016/j.cej.2014.08.085 otwiera się w nowej karcie
  42. Liang, X., Zhu, X., Butler, E.C., 2011. Comparison of four advanced oxidation processes for the removal of naphthenic acids from model oil sands process water. J. Hazard. Mater. 190, 168-176. https://doi.org/10.1016/j.jhazmat.2011.03.022 otwiera się w nowej karcie
  43. Litter, M., 2005. Introduction to Photochemical Advanced Oxidation Processes for Water Treatment, in: Boule, P., Bahnemann, D.W., Robertson, P.K.J. (Eds.), Environmental Photochemistry Part II. Springer Berlin Heidelberg, pp. 325-366. https://doi.org/10.1007/b89482 otwiera się w nowej karcie
  44. Liu, X., Zhang, T., Zhou, Y., Fang, L., Shao, Y., 2013. Degradation of atenolol by UV/peroxymonosulfate: Kinetics, effect of operational parameters and mechanism. Chemosphere 93, 2717-2724. https://doi.org/10.1016/j.chemosphere.2013.08.090 otwiera się w nowej karcie
  45. Long, A., Lei, Y., Zhang, H., 2014. Degradation of Toluene by a Selective Ferrous Ion Activated Persulfate Oxidation Process. Ind. Eng. Chem. Res. 53, 1033-1039. https://doi.org/10.1021/ie402633n otwiera się w nowej karcie
  46. Matzek, L.W., Carter, K.E., 2016. Activated persulfate for organic chemical degradation: A review. Chemosphere 151, 178-188. otwiera się w nowej karcie
  47. https://doi.org/10.1016/j.chemosphere.2016.02.055 otwiera się w nowej karcie
  48. Neta, P., Huie, R.E., Ross, A.B., 1988. Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. Ref. Data 17, 1027-1040.
  49. Ning, X.A., Wang, J.Y., Li, R.J., Wen, W. Bin, Chen, C.M., Wang, Y.J., Yang, Z.Y., Liu, J.Y., 2015. Fate of volatile aromatic hydrocarbons in the wastewater from six textile dyeing wastewater treatment plants. Chemosphere 136, 50-55. https://doi.org/10.1016/j.chemosphere.2015.03.086 otwiera się w nowej karcie
  50. Oh, S.-Y., Shin, D.-S., 2013. Treatment of Diesel-Contaminated Soil by Fenton and Persulfate Oxidation with Zero-Valent Iron. Soil Sediment Contam. An Int. J. 23, 180-193. https://doi.org/10.1080/15320383.2014.808170 otwiera się w nowej karcie
  51. Oh, S.Y., Kang, S.G., Kim, D.W., Chiu, P.C., 2011. Degradation of 2,4-dinitrotoluene by persulfate activated with iron sulfides. Chem. Eng. J. 172, 641-646. https://doi.org/10.1016/j.cej.2011.06.023 otwiera się w nowej karcie
  52. Ojala, S., Pitkäaho, S., Laitinen, T., Niskala Koivikko, N., Brahmi, R., Gaálová, J., Matejova, L., Kucherov, A., Päivärinta, S., Hirschmann, C., Nevanperä, T., Riihimäki, M., Pirilä, M., Keiski, R.L., 2011. Catalysis in VOC Abatement. Top. Catal. 54, 1224-1256. https://doi.org/10.1007/s11244-011-9747-1 otwiera się w nowej karcie
  53. Patnaik, P., Khoury, J.N., 2004. Reaction of phenol with nitrite ion: Pathways of formation of nitrophenols in environmental waters. Water Res. 38, 206-210. https://doi.org/10.1016/j.watres.2003.08.022 otwiera się w nowej karcie
  54. Popiel, S., Nalepa, T., Dzierzak, D., Stankiewicz, R., Witkiewicz, Z., 2009. Rate of dibutylsulfide decomposition by ozonation and the O3/H2O2 advanced oxidation process. J. Hazard. Mater. 164, 1364-1371. https://doi.org/10.1016/j.jhazmat.2008.09.049 otwiera się w nowej karcie
  55. Poyatos, J.M., Muñio, M.M., Almecija, M.C., Torres, J.C., Hontoria, E., Osorio, F., 2010. Advanced Oxidation Processes for Wastewater Treatment: State of the Art. Water. Air. Soil Pollut. 205, 187-204. https://doi.org/10.1007/s11270-009-0065-1 otwiera się w nowej karcie
  56. Qi, C., Liu, X., Ma, J., Lin, C., Li, X., Zhang, H., 2016. Activation of peroxymonosulfate by base: Implications for the degradation of organic pollutants. Chemosphere 151, 280-288. https://doi.org/10.1016/j.chemosphere.2016.02.089 otwiera się w nowej karcie
  57. Rehman, F., Sayed, M., Khan, J.A., Shah, N.S., Khan, H.M., Dionysiou, D.D., 2018. Oxidative removal of brilliant green by UV/S2O8 2 -, UV/HSO5-and UV/H2O2 processes in aqueous media: A comparative study. J. Hazard. Mater. 357, 506-514. https://doi.org/10.1016/j.jhazmat.2018.06.012 otwiera się w nowej karcie
  58. Ren, X., Zeng, G., Tang, L., Wang, J., Wan, J., Feng, H., Song, B., Huang, C., Tang, X., 2018. Effect of exogenous carbonaceous materials on the bioavailability of organic pollutants and their ecological risks. Soil Biol. Biochem. 116, 70-81. https://doi.org/10.1016/j.soilbio.2017.09.027 otwiera się w nowej karcie
  59. Rigol, A., Latorre, A., Lacorte, S., Barceló, D., 2002. Determination of toxic compounds in paper-recycling process waters by gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. J. Chromatogr. A 963, 265-275. https://doi.org/10.1016/S0021-9673(02)00232-7 otwiera się w nowej karcie
  60. Safarzadeh-Amiri, A., 2001. O3/H2O2 treatment of methyl-tert-butyl ether (MTBE) in contaminated waters. Water Res. 35, 3706-3714. https://doi.org/10.1016/S0043- 1354(01)00090-2 otwiera się w nowej karcie
  61. Saien, J., Nejati, H., 2007. Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions. J. Hazard. Mater. 148, 491- 495. https://doi.org/10.1016/j.jhazmat.2007.03.001 otwiera się w nowej karcie
  62. Saien, J., Shahrezaei, F., 2012. Organic Pollutants Removal from Petroleum Refinery Wastewater with Nanotitania Photocatalyst and UV Light Emission. Int. J. Photoenergy 2012, 1-5. https://doi.org/10.1155/2012/703074 otwiera się w nowej karcie
  63. Sato, K., Hyodo, M., Aoki, M., Zheng, X.Q., Noyori, R., 2001. Oxidation of sulfides to sulfoxides and sulfones with 30% hydrogen peroxide under organic solvent-and halogen-free conditions. Tetrahedron 57, 2469-2476. https://doi.org/10.1016/S0040-4020(01)00068-0 otwiera się w nowej karcie
  64. Sayed, M., Khan, J.A., Shah, L.A., Shah, N.S., Shah, F., Khan, H.M., Zhang, P., Arandiyan, H., 2018. Solar Light Responsive Poly(vinyl alcohol)-Assisted Hydrothermal Synthesis of Immobilized TiO2/Ti Film with the Addition of Peroxymonosulfate for Photocatalytic Degradation of Ciprofloxacin in Aqueous Media: A Mechanistic Approach. J. Phys. Chem. C 122, 406-421. https://doi.org/10.1021/acs.jpcc.7b09169 otwiera się w nowej karcie
  65. Shah, N.S., Khan, J.A., Sayed, M., Khan, Z.U.H., Rizwan, A.D., Muhammad, N., Boczkaj, G., Murtaza, B., Imran, M., Khan, H.M., Zaman, G., 2018a. Solar light driven degradation of norfloxacin using as-synthesized Bi 3+ and Fe 2+ co-doped ZnO with the addition of HSO5−: Toxicities and degradation pathways investigation. Chem. Eng. J. 351, 841-855. https://doi.org/10.1016/j.cej.2018.06.111 otwiera się w nowej karcie
  66. Shah, N.S., Rizwan, A.D., Khan, J.A., Sayed, M., Khan, Z.U.H., Murtaza, B., Iqbal, J., Din, S.U., Imran, M., Nadeem, M., Al-Muhtaseb, A.H., Muhammad, N., Khan, H.M., Ghauri, M., Zaman, G., 2018b. Toxicities, kinetics and degradation pathways investigation of ciprofloxacin degradation using iron-mediated H2O2based advanced oxidation processes. Process Saf. Environ. Prot. 117, 473- 482. https://doi.org/10.1016/j.psep.2018.05.020 otwiera się w nowej karcie
  67. Shahidi, D., Roy, R., Azzouz, A., 2015. Advances in catalytic oxidation of organic pollutants -Prospects for thorough mineralization by natural clay catalysts. Appl. Catal. B Environ. 174-175, 277-292. https://doi.org/10.1016/j.apcatb.2015.02.042 otwiera się w nowej karcie
  68. Sharma, J., Mishra, I.M., Dionysiou, D.D., Kumar, V., 2015. Oxidative removal of Bisphenol A by UV-C/peroxymonosulfate (PMS): Kinetics, influence of co- existing chemicals and degradation pathway. Chem. Eng. J. 276, 193-204. https://doi.org/10.1016/j.cej.2015.04.021 otwiera się w nowej karcie
  69. Shen, Y.-S., Ku, Y., 1999. Treatment of gas-phase volatile organic compounds (VOCs) by the process. Chemosphere 38, 1855-1866. https://doi.org/10.1016/S0045- 6535(98)00400-7 otwiera się w nowej karcie
  70. Sipma, J., Svitelskaya, A., Mark, B. Van Der, Hulshoff, L.W., Lettinga, G., Buisman, C.J.N., Janssen, A.J.H., 2004. Potentials of biological oxidation processes for the treatment of spent sulfidic caustics containing thiols. Water Res. 38, 4331-4340. https://doi.org/10.1016/j.watres.2004.08.022 otwiera się w nowej karcie
  71. Spalek, O., Balej, J., Paseka, I., 1982. Kinetics of the decomposition of hydrogen peroxide in alkaline solutions. J. Chem. Soc. Faraday Trans. 78, 2349. https://doi.org/10.1039/f19827802349 otwiera się w nowej karcie
  72. Stepnowski, P., Siedlecka, E.M., Behrend, P., Jastorff, B., 2002. Enhanced photo- degradation of contaminants in petroleum refinery wastewater. Water Res. 36, 2167-2172. otwiera się w nowej karcie
  73. Sun, R., Lawther, J.M., Banks, W.B., 1995. The effect of alkaline nitrobenzene oxidation conditions on the yield and components of phenolic monomers in wheat straw lignin and compared to cupric(II) oxidation. Ind. Crops Prod. 4, 241-254. https://doi.org/10.1016/0926-6690(95)00038-0 otwiera się w nowej karcie
  74. Ventura, A., Lorino, T., Le Guen, L., 2015. Modeling of Polycyclic Aromatic Hydrocarbons stack emissions from a hot mix asphalt plant for gate-to-gate Life Cycle Inventory. J. Clean. Prod. 93, 151-158. https://doi.org/10.1016/j.jclepro.2015.01.021 otwiera się w nowej karcie
  75. Vione, D., Maurino, V., Minero, C., Pelizzetti, E., 2001. Phenol photonitration upon UV irradiation of nitrite in aqueous solution I: Effects of oxygen and 2-propanol. Chemosphere 45, 893-902. https://doi.org/10.1016/S0045-6535(01)00035-2 otwiera się w nowej karcie
  76. von Sonntag, C. (Ed.), 2005. Free-radical-induced DNA damage and its repair-A chemical perpesctive. Springer, Berlin Heidelberg. otwiera się w nowej karcie
  77. Wacławek, S., Lutze, H. V, Grübel, K., Padil, V.V., Černík, M., Dionysiou, D., 2017. Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J. 330, 44-62. https://doi.org/10.1016/j.cej.2017.07.132 otwiera się w nowej karcie
  78. Wols, B.A., Hofman-Caris, C.H.M., Harmsen, D.J.H., Beerendonk, E.F., 2013. Degradation of 40 selected pharmaceuticals by UV/H2O2. Water Res. 47, 5876- 5888. https://doi.org/10.1016/j.watres.2013.07.008 otwiera się w nowej karcie
  79. Wright, S.W., Abelman, M.M., Bostrom, L.L., Corbett, R.L., 1992. Benzyl and t-butyl sulfoxides as sulfenyl halide equivalents: a convenient preparation of benzisothiazolones. Tetrahedron Lett. 33, 153-156. https://doi.org/10.1016/0040- 4039(92)88037-6 otwiera się w nowej karcie
  80. Wu, J.J., Muruganandham, M., Chen, S.H., 2007. Degradation of DMSO by ozone- based advanced oxidation processes. J. Hazard. Mater. 149, 218-225. https://doi.org/10.1016/j.jhazmat.2007.03.071 otwiera się w nowej karcie
  81. Zheng, Y., Hill, D.O., Kuo, C.H., 1993. Destruction of cresols by chemical oxidation. J. Hazard. Mater. 34, 245-260. https://doi.org/10.1016/0304-3894(93)85009-4 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 200 razy

Publikacje, które mogą cię zainteresować

Meta Tagi