Polyurethane Composite Scaffolds Modified with the Mixture of Gelatin and Hydroxyapatite Characterized by Improved Calcium Deposition - Publikacja - MOST Wiedzy

Wyszukiwarka

Polyurethane Composite Scaffolds Modified with the Mixture of Gelatin and Hydroxyapatite Characterized by Improved Calcium Deposition

Abstrakt

The skeleton is a crucial element of the motion system in the human body, whose main function is to support and protect the soft tissues. Furthermore, the elements of the skeleton act as a storage place for minerals and participate in the production of red blood cells. The bone tissue includes the craniomaxillofacial bones, ribs, and spine. There are abundant reports in the literature indicating that the amount of treatments related to bone fractures increases year by year. Nowadays, the regeneration of the bone tissue is performed by using autografts or allografts, but this treatment method possesses a few disadvantages. Therefore, new and promising methods of bone tissue regeneration are constantly being sought. They often include the implantation of tissue scaffolds, which exhibit proper mechanical and osteoconductive properties. In this paper, the preparation of polyurethane (PUR) scaffolds modified by gelatin as the reinforcing factor and hydroxyapatite as the bioactive agent was described. The unmodified and modified scaffolds were tested for their mechanical properties; morphological assessments using optical microscopy were also conducted, as was the ability for calcification using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Moreover, each type of scaffold was subjected to a degradation process in 5M NaOH and 2M HCl aqueous solutions. It was noticed that the best properties promoting the calcium phosphate deposition were obtained for scaffolds modified with 2% gelatin solution containing 5% of hydroxyapatite

Cytowania

  • 4

    CrossRef

  • 3

    Web of Science

  • 3

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 21 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Polymers nr 12, strony 1 - 18,
ISSN: 2073-4360
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Carayon I., Szarlej P., Łapiński M., Kucińska-Lipka J.: Polyurethane Composite Scaffolds Modified with the Mixture of Gelatin and Hydroxyapatite Characterized by Improved Calcium Deposition// Polymers -Vol. 12,iss. 2 (2020), s.1-18
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/polym12020410
Bibliografia: test
  1. Li, L.; Zhao, M.; Li, J.; Zuo, Y.; Zou, Q.; Li, Y. Preparation and cell infiltration of lotus-type porous nano-hydroxyapatite/polyurethane scaffold for bone tissue regeneration. Mater. Lett. 2015, 149, 25-28. [CrossRef] otwiera się w nowej karcie
  2. Janik, H.; Marzec, M. A review: Fabrication of porous polyurethane scaffolds. Mater. Sci. Eng. C 2015, 48, 586-591. [CrossRef] otwiera się w nowej karcie
  3. Tsai, M.; Hung, K.; Hung, S.; Hsu, S. Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering. Colloids Surf. B Biointerfaces 2015, 125, 34-44. [CrossRef] otwiera się w nowej karcie
  4. Zhu, Q.; Li, X.; Fan, Z.; Xu, Y.; Niu, H.; Li, C.; Dang, Y.; Huang, Z.; Wang, Y.; Guan, J. Biomimetic polyurethane/TiO2nanocomposite scaffolds capable of promoting biomineralization and mesenchymal stem cell proliferation. Mater. Sci. Eng. C 2018, 85, 79-87. [CrossRef] otwiera się w nowej karcie
  5. Wang, Y.; Barrera, C.M.; Dauer, E.A.; Gu, W.; Andreopoulos, F.; Huang, C.C. Systematic characterization of porosity and mass transport and mechanical properties of porous polyurethane scaffolds. J. Mech. Behav. Biomed. Mater. 2017, 65, 657-664. [CrossRef] otwiera się w nowej karcie
  6. Da, L.; Gong, M.; Chen, A.; Zhang, Y.; Huang, Y.; Guo, Z.; Li, S.; Li-Ling, J.; Zhang, L.; Xie, H. Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering. Acta Biomater. 2017, 59, 45-57. [CrossRef] otwiera się w nowej karcie
  7. Korpela, J.; Kokkari, A.; Korhonen, H.; Malin, M.; Narhi, T.; Seppalea, J. Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101, 610-619. [CrossRef] otwiera się w nowej karcie
  8. Fidancevska, E.; Ruseska, G.; Bossert, J.; Lin, Y.M.; Boccaccini, A.R. Fabrication and characterization of porous bioceramic composites based on hydroxyapatite and titania. Mater. Chem. Phys. 2007, 103, 95-100. [CrossRef] otwiera się w nowej karcie
  9. Ciobanu, G.; Ilisei, S.; Luca, C.; Carja, G.; Ciobanu, O. The effect of vitamins to hydroxyapatite growth on porous polyurethane substrate. Prog. Org. Coatings 2012, 74, 648-653. [CrossRef] otwiera się w nowej karcie
  10. Dorozhkin, S.V. Calcium orthophosphate bioceramics. Eurasian Chem. J. 2010, 12, 247-258. [CrossRef] otwiera się w nowej karcie
  11. Islam, M.S.; Todo, M. Effects of sintering temperature on the compressive mechanical properties of collagen/hydroxyapatite composite scaffolds for bone tissue engineering. Mater. Lett. 2016, 173, 231-234. [CrossRef] otwiera się w nowej karcie
  12. Endres, M.; Hutmacher, D.W.; Salgado, A.J.; Kaps, C.; Ringe, J.; Reis, R.L.; Sittinger, M.; Brandwood, A.; Schantz, J.T. Osteogenic Induction of Human Bone Marrow-Derived Mesenchymal Progenitor Cells in Novel Synthetic Polymer-Hydrogel Matrices. Tissue Eng. 2003, 9, 689-702. [CrossRef] otwiera się w nowej karcie
  13. Szcześ, A.; Hołysz, L.; Chibowski, E. Synthesis of hydroxyapatite for biomedical applications. Adv. Colloid Interface Sci. 2017, 249, 321-330. [CrossRef] otwiera się w nowej karcie
  14. Guarino, V. The Role of Hydroxyapatite as Solid Signal on Performance of PCL Porous Scaffolds for Bone Tissue Regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 2, 548-557. [CrossRef] otwiera się w nowej karcie
  15. De Santis, R. Towards the Design of 3D Fiber-Deposited Nanocomposite Magnetic Scaffolds for Bone Regeneration. J. Biomed. Nanotechnol. 2015, 11, 1236-1246. [CrossRef] otwiera się w nowej karcie
  16. Abdal-hay, A.; Abbasi, N.; Gwiazda, M.; Hamlet, S.; Ivanovski, S. Novel Polycaprolactone /Hydroxyapatite Nanocomposite Fibrous Scaffolds by Direct Melt-Electrospinning Writing. Eur. Polym. J. 2018, 105, 257-264. [CrossRef] otwiera się w nowej karcie
  17. Kozlowska, J.; Jundzill, A.; Bajek, A.; Bodnar, M.; Marszalek, A.; Witmanowski, H.; Sionkowska, A. Preliminary in vitro and in vivo assessment of modified collagen/hydroxyapatite composite. Mater. Lett. 2018, 221, 74-76. [CrossRef] otwiera się w nowej karcie
  18. He, X.; Fan, X.; Feng, W.; Chen, Y.; Guo, T.; Wang, F.; Liu, J.; Tang, K. Incorporation of microfibrillated cellulose into collagen-hydroxyapatite scaffold for bone tissue engineering. Int. J. Biol. Macromol. 2018, 115, 385-392. [CrossRef] otwiera się w nowej karcie
  19. Tohamy, K.M.; Mabrouk, M.; Soliman, I.E.; Beherei, H.H.; Aboelnasr, M.A. Novel alginate/hydroxyethyl cellulose/hydroxyapatite composite scaffold for bone regeneration: In vitro cell viability and proliferation of human mesenchymal stem cells. Int. J. Biol. Macromol. 2018, 112, 448-460. [CrossRef] otwiera się w nowej karcie
  20. Sarker, A.; Amirian, J.; Min, Y.K.; Lee, B.T. HAp granules encapsulated oxidized alginate-gelatin-biphasic calcium phosphate hydrogel for bone regeneration. Int. J. Biol. Macromol. 2015, 81, 898-911. [CrossRef] otwiera się w nowej karcie
  21. Yamamoto, M.; Hokugo, A.; Takahashi, Y.; Nakano, T.; Hiraoka, M.; Tabata, Y. Combination of BMP-2-releasing gelatin/β-TCP sponges with autologous bone marrow for bone regeneration of X-ray-irradiated rabbit ulnar defects. Biomaterials 2015, 56, 18-25. [CrossRef] [PubMed] otwiera się w nowej karcie
  22. Jeya Shakila, R.; Jeevithan, E.; Varatharajakumar, A.; Jeyasekaran, G.; Sukumar, D. Functional characterization of gelatin extracted from bones of red snapper and grouper in comparison with mammalian gelatin. LWT Food Sci. Technol. 2012, 48, 30-36. [CrossRef] otwiera się w nowej karcie
  23. Kim, E.H.; Han, G.D.; Noh, S.H.; Kim, J.W.; Lee, J.G.; Ito, Y.; Son, T. Il Photo-reactive natural polymer derivatives for medical application. J. Ind. Eng. Chem. 2017, 54, 1-13. [CrossRef] otwiera się w nowej karcie
  24. Echave, M.C.; Sánchez, P.; Pedraz, J.L.; Orive, G. Progress of gelatin-based 3D approaches for bone regeneration. J. Drug Deliv. Sci. Technol. 2017, 42, 63-74. [CrossRef] otwiera się w nowej karcie
  25. Saravanan, S.; Chawla, A.; Vairamani, M.; Sastry, T.P.; Subramanian, K.S.; Selvamurugan, N. Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. Int. J. Biol. Macromol. 2017, 104, 1975-1985. [CrossRef] [PubMed] otwiera się w nowej karcie
  26. Ren, K.; Wang, Y.; Sun, T.; Yue, W.; Zhang, H. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Mater. Sci. Eng. C 2017, 78, 324-332. [CrossRef] otwiera się w nowej karcie
  27. Kuttappan, S.; Mathew, D.; Nair, M.B. Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering-A mini review. Int. J. Biol. Macromol. 2016, 93, 1390-1401. [CrossRef] otwiera się w nowej karcie
  28. Yin, G.; Zhao, D.; Ren, Y.; Zhang, L.; Zhou, Z.; Li, Q. A convenient process to fabricate gelatin modified porous PLLA materials with high hydrophilicity and strength. Biomater. Sci. 2016, 4, 310-318. [CrossRef] otwiera się w nowej karcie
  29. Nouri-Felekori, M.; Mesgar, A.S.M.; Mohammadi, Z. Development of composite scaffolds in the system of gelatin-calcium phosphate whiskers/fibrous spherulites for bone tissue engineering. Ceram. Int. 2015, 41, 6013-6019. [CrossRef] otwiera się w nowej karcie
  30. Serra, I.R.; Fradique, R.; Vallejo, M.C.S.; Correia, T.R.; Miguel, S.P.; Correia, I.J. Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration. Mater. Sci. Eng. C. 2015, 55, 592-604. [CrossRef] otwiera się w nowej karcie
  31. Hossan, M.J.; Gafur, M.A.; Kadir, M.R.; Karim, M.M. Preparation and Characterization of Gelatin-Hydroxyapatite Composite for Bone Tissue Engineering. Int. J. Eng. Technol. 2014, 14, 24-32. otwiera się w nowej karcie
  32. Raucci, M.G.; Amora, U.D.; Ronca, A.; Demitri, C.; Ambrosio, L. Bioactivation Routes of Gelatin-Based Scaffolds to Enhance at Nanoscale Level Bone Tissue Regeneration. Front. Bioeng. Biotechnol. 2019, 7, 27. [CrossRef] [PubMed] otwiera się w nowej karcie
  33. Foox, M.; Zilberman, M. Drug delivery from gelatin-based systems. Expert Opin. Drug Deliv. 2015, 12, 1547-1563. [CrossRef] otwiera się w nowej karcie
  34. Kucinska-Lipka, J.; Gubanska, I.; Sienkiewicz, M. Thermal and mechanical properties of polyurethanes modified with L-ascorbic acid. J. Therm. Anal. Calorim. 2017, 127, 1631-1638. [CrossRef] otwiera się w nowej karcie
  35. Kucinska-Lipka, J.; Gubanska, I.; Janik, H.; Pokrywczynska, M.; Drewa, T. L-ascorbic acid modified poly(ester urethane)s as a suitable candidates for soft tissue engineering applications. React. Funct. Polym. 2015, 97, 105-115. [CrossRef] otwiera się w nowej karcie
  36. Kucińska-Lipka, J.; Gubanska, I.; Korchynskyi, O.; Malysheva, K.; Kostrzewa, M. The influence of calcium glycerophosphate (GPCa) modifier on physicochemical, mechanical and biological performance of polyurethanes applicable as biomaterials for bone tissue scaffolds fabrication. Polymers 2017, 9, 329. [CrossRef] [PubMed] otwiera się w nowej karcie
  37. Kucińska-Lipka, J.; Gubańska, I.; Janik, H. Gelatin-modified polyurethanes for soft tissue scaffold. Sci. World J. 2013, 2013, 450132. [CrossRef] otwiera się w nowej karcie
  38. Feng, S.; He, F.; Ye, J. Materials Science & Engineering C Hierarchically porous structure, mechanical strength and cell biological behaviors of calcium phosphate composite sca ff olds prepared by combination of extrusion and porogen burnout technique and enhanced by gelatin. Mater. Sci. Eng. C 2018, 82, 217-224. otwiera się w nowej karcie
  39. Mi, H.; Salick, M.R.; Jing, X.; Jacques, B.R.; Crone, W.C.; Peng, X.; Turng, L. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mater. Sci. Eng. C 2013, 33, 4767-4776. [CrossRef] otwiera się w nowej karcie
  40. Widiyanti, P. Composition variation on bone graft synthesis based on hydroxyapatite and alginate. J. Biomim. Biomater. Biomed. Eng. 2016, 29, 14-21. [CrossRef] otwiera się w nowej karcie
  41. Sadeghzade, S.; Emadi, R.; Labbaf, S. Hardystonite-diopside nanocomposite scaffolds for bone tissue engineering applications. Mater. Chem. Phys. 2017, 202, 95-103. [CrossRef] otwiera się w nowej karcie
  42. Roseti, L.; Parisi, V.; Petretta, M.; Cavallo, C.; Desando, G.; Bartolotti, I.; Grigolo, B. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater. Sci. Eng. C 2017, 78, 1246-1262. [CrossRef] [PubMed] otwiera się w nowej karcie
  43. Loboa, E.G. 23-Nanofibrous smart bandages for wound care. In Wound Healing Biomaterials, 1st ed.; Ågren, M., Ed.; Elsevier Ltd.: New York, NY, USA, 2016; Volume 2, pp. 497-539.
  44. Gorna, K.; Gogolewski, S. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(ε-caprolactone)-poly(ethylene oxide) diols and various chain extenders. J. Biomed. Mater. Res. 2002, 60, 592-606. [CrossRef] [PubMed] otwiera się w nowej karcie
  45. Haryńska, A.; Kucinska-Lipka, J.; Sulowska, A.; Gubanska, I.; Kostrzewa, M.; Janik, H. Medical-Grade PCL Based Polyurethane System for FDM 3D Printing-Characterization and Fabrication. Materials (Basel) 2019, 12, 887. [CrossRef] [PubMed] otwiera się w nowej karcie
  46. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Źródła finansowania:
  • Politechnika Gdańska nr. projektu 033206
Weryfikacja:
Politechnika Gdańska

wyświetlono 39 razy

Publikacje, które mogą cię zainteresować

Meta Tagi