Abstrakt
Traffic–induced vibrations may constitute a considerable load to a building, cause cracking of plaster, cracks in load–bearing elements or even a global structural collapse of the whole structure [1-4]. Vibrations measurements of real structures are costly and laborious, not justified in all cases. The aim of the paper is to create an original algorithm, to predict the negative dynamic impact on the examined residential building with a high probability. The model to forecast the impact of vibrations on buildings is based on artificial neural networks [5]. The author’s own field studies carried out according to the Polish standard [6] and literature examples [7- 10] have been used to create the algorithms. The results of the conducted analysis show that an artificial neural network can be considered a good tool to predict the impact of traffic–induced vibrations on residential buildings, with a sufficiently high reliability.
Cytowania
-
4
CrossRef
-
0
Web of Science
-
4
Scopus
Autor (1)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
MATEC Web of Conferences
nr 219,
strony 1 - 7,
ISSN: 2261-236X - Język:
- angielski
- Rok wydania:
- 2018
- Opis bibliograficzny:
- Jakubczyk-Gałczyńska A.: Predicting the impact of traffic–induced vibrations on buildings using artificial neural networks// MATEC Web of Conferences -Vol. 219, (2018), s.1-7
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1051/matecconf/201821904004
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 158 razy