Preload monitoring in a bolted joint using Lamb wave energy - Publikacja - MOST Wiedzy

Wyszukiwarka

Preload monitoring in a bolted joint using Lamb wave energy

Abstrakt

The knowledge of the load in prestressed bolted connections is essential for the proper operation and safety of engineering structures. Recently, bolted joints have become an area of intensive research associated with non-destructive diagnostics, in particular in the context of wave propagation techniques. In this paper, a novel procedure of bolt load estimation based on the energy of Lamb wave signals was proposed. Experimental tests were performed on a single lap joint of two steel plates. Ultrasonic waves were excited and registered by means of piezoelectric transducers, while precise measurement of the bolt load was obtained by means of using the force washer transducer. Experimental tests were supported by the finite element method analysis based on Schoenberg’s concept. The results showed that the relationship between the bolt load and signal energy was strongly nonlinear and it depended on the location of acquisition points.

Cytowania

  • 1

    CrossRef

  • 0

    Web of Science

  • 9

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 116 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Bulletin of the Polish Academy of Sciences-Technical Sciences nr 67, strony 1161 - 1169,
ISSN: 0239-7528
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Kędra R., Rucka M.: Preload monitoring in a bolted joint using Lamb wave energy// Bulletin of the Polish Academy of Sciences-Technical Sciences -Vol. 67,iss. 6 (2019), s.1161-1169
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.24425/bpasts.2019.131570
Bibliografia: test
  1. D. Chen, Y. Ma, B. Hou, R. Liu, and W. Zhang, "Tightening Behavior of Bolted Joint with Non-parallel Bearing Surface", Int. J. Mech. Sci., 153-154, 240-253 (2019). otwiera się w nowej karcie
  2. J. Seo, J. Hu and K.-H. Kim, "Analytical Investigation of the Cyclic Behavior of Smart Recentering T-Stub Components with Superelastic SMA Bolts", Metals, 7, 386, (2017). otwiera się w nowej karcie
  3. J. Álvarez, R. Lacalle, B. Arroyo, S. Cicero, and F. Gutiérrez-So- lana, "Failure Analysis of High Strength Galvanized Bolts Used in Steel Towers", Metals, 6, 163, (2016). otwiera się w nowej karcie
  4. H. Cho and C.J. Lissenden, "Structural health monitoring of fatigue crack growth in plate structures with ultrasonic guided waves", Struct. Heal. Monit. 11, 393-404 (2012). otwiera się w nowej karcie
  5. B. Yang, F.-Z. Xuan, Y. Xiang, D. Li, W. Zhu, X. Tang, J. Xu, K. Yang, and C. Luo, "Lamb Wave-Based Structural Health Monitoring on Composite Bolted Joints under Tensile Load", Materials, 10, 652, (2017). otwiera się w nowej karcie
  6. M. Rucka, "Monitoring Steel Bolted Joints during a Monotonic Tensile Test Using Linear and Nonlinear Lamb Wave Methods: A Feasibility Study", Metals, 8, 683, (2018). otwiera się w nowej karcie
  7. J. Hoła, J. Bień, L. Sadowski, and K. Schabowicz, "Non-de- structive and semi-destructive diagnostics of concrete structures in assessment of their durability, Bull. Pol. Ac.: Tech. 63, 87-96, (2015). otwiera się w nowej karcie
  8. A. Garbacz, "Application of stress based NDT methods for concrete repair bond quality control", Bull. Pol. Ac.: Tech. 63, 77-85, (2015). otwiera się w nowej karcie
  9. B. Goszczyńska, G. Świt, and W. Trąmpczyński, "Analysis of the microcracking process with the Acoustic Emission method with respect to the service life of reinforced concrete structures with the example of the RC beams", Bull. Pol. Ac.: Tech. 63, 55-63, (2015). otwiera się w nowej karcie
  10. A. Mita and A. Fujimoto, "Active detection of loosened bolts using ultrasonic waves and support vector machines", in: Pro- ceeding 5th Int. Work. Struct. Heal. Monit., pp. 1017-1024, 2005.
  11. S.-H. Park, C.-B. Yun, and Y. Roh, "PZT-induced Lamb Waves and Pattern Recognitions for On-line Health Monitoring of Jointed Steel Plates", in: Proc. SPIE 5765, Smart Struct. Mater. 2005 Sensors Smart Struct. Technol. Civil, Mech. Aerosp. Syst., pp. 364-375, 2005. otwiera się w nowej karcie
  12. J. Yang and F.K. Chang, "Detection of bolt loosening in C-C composite thermal protection panels: I. Diagnostic principle", Smart Mater. Struct. 15, 581-590, (2006). otwiera się w nowej karcie
  13. J. Yang and F.K. Chang, "Detection of bolt loosening in C-C composite thermal protection panels: II. Experimental verifica- tion", Smart Mater. Struct. 15, 591-599, (2006). otwiera się w nowej karcie
  14. D. Doyle, A. Zagrai, B. Arritt and H. Çakan, "Damage detec- tion in bolted space structures", J. Intell. Mater. Syst. Struct. 21, 251-264, (2010). otwiera się w nowej karcie
  15. Y.K. An and H. Sohn, "Integrated impedance and guided wave based damage detection", Mech. Syst. Signal Process. 28, 50-62, (2012). otwiera się w nowej karcie
  16. E. Sevillano, R. Su and R. Perera, "Damage detection based on power dissipation measured with PZT sensors through the com- bination of electro-mechanical impedances and guided waves", Sensors, 16, 639, (2016). otwiera się w nowej karcie
  17. F. Amerini and M. Meo, "Structural health monitoring of bolted joints using linear and nonlinear acoustic/ultrasound methods", Struct. Heal. Monit. 10, 659-672, (2011). otwiera się w nowej karcie
  18. J. Martinez, A. Sisman, O. Onen, D. Velasquez, and R. Guld- iken, "A synthetic phased array surface acoustic wave sensor for quantifying bolt tension", Sensors, 12, 12265-12278, (2012). otwiera się w nowej karcie
  19. T. Wang, G. Song, Z. Wang, and Y. Li, "Proof-of-concept study of monitoring bolt connection status using a piezoelectric based active sensing method", Smart Mater. Struct. 22, 087001, (2013). otwiera się w nowej karcie
  20. J. Ruan, Z. Zhang, T. Wang, Y. Li, and G. Song, "An anti-noise real-time cross-correlation method for bolted joint monitoring using piezoceramic transducers", Smart Struct. Syst. 16, 281-294, (2015). otwiera się w nowej karcie
  21. W. Tao, L. Shaopeng, S. Junhua, and L. Yourong, "Health moni- toring of bolted joints using the time reversal method and piezo- electric transducers", Smart Mater. Struct. 25, 25010, (2016). otwiera się w nowej karcie
  22. Preload monitoring in a bolted joint using Lamb wave energy Bull. Pol. Ac.: Tech. 67(6) 2019 otwiera się w nowej karcie
  23. S.M. Parvasi, S.C.M. Ho, Q. Kong, R. Mousavi, and G. Song, "Real time bolt preload monitoring using piezoceramic transduc- ers and time reversal technique -A numerical study with exper- imental verification", Smart Mater. Struct. 25, 1-11, (2016). otwiera się w nowej karcie
  24. M. Mandal and A. Asif, Continuous and Discrete Time Signals and Systems, Cambridge University Press, 2007.
  25. M. Schoenberg, "Elastic wave behavior across linear slip inter- faces", J. Acoust. Soc. Am. 68, 1516-1521, (1980). otwiera się w nowej karcie
  26. R.D. Mindlin, "Compliance of elastic bodies in contact", J. Appl. Mech. 16, 259-268, (1949). otwiera się w nowej karcie
  27. S. Biwa, S. Hiraiwa, and E. Matsumoto, "Stiffness evaluation of contacting surfaces by bulk and interface waves", Ultrasonics 47 123-129 (2007). otwiera się w nowej karcie
  28. R. Kędra and M. Rucka, "Modelling of elastic wave propagation in a bolted joint using a thin layer of shell elements", in: Shell Struct. Theory Appl. 4, CRC Press/Balkema, pp. 293-296, 2018. otwiera się w nowej karcie
  29. C. Ramadas, K. Balasubramaniam, A. Hood, M. Joshi, and C.V. Krishnamurthy, "Modelling of attenuation of lamb waves using rayleigh damping: Numerical and experimental studies", Compos. Struct. 93, 2020-2025 (2011). otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 213 razy

Publikacje, które mogą cię zainteresować

Meta Tagi