Radar with rotary head - Publikacja - MOST Wiedzy


Radar with rotary head


Nowadays usage of radars is no longer reserved only for the military purpose. It finds many applications in various areas of science and industry. It may be used in order to obtain extended information about the state of critical infrastructure, like shipyards or petrochemical plants. Furthermore, it may be applied in vision denied environments.

The aim of this project was to create a radar system, capable of detecting nearby objects and providing distance measurements. The final product was expected to be omnidirectional, due to the usage of a rotary head.

Hardware layer was significantly reduced by applying the highly integrated radar frontend RFbeam K-MC1, attached to the National Instruments board, that is executing digital signal processing (DSP) algorithms, using both, the FPGA and the realtime processor. The rotary head is based on a stepper motor. The entire software was created using LabView, the graphical programming environment. The radar uses frequency modulated continuous wave (FMCW), which is a low cost technique, providing high resolution measurements. It is extremely popular in the automotive industry, what makes the components easily accessible.

All actions mentioned above resulted in getting a correctly working short range radar system, that is proving highly accurate measurements. It underwent series of tests, that have proven its reliability.

Acknowledgement: This paper is a result of the SCOTT project (www.scott-project.eu) which has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 737422. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and Austria, Spain, Finland, Ireland, Sweden, Germany, Poland, Portugal, Netherlands, Belgium, Norway.

The document reflects only the author’s view and the Commission is not responsible for any use that may be made of the information it contains.

Cytuj jako

Informacje szczegółowe

Doktoraty, rozprawy habilitacyjne, nostryfikacje
Doktoraty, rozprawy habilitacyjne, nostryfikacje
Rok wydania:
Bibliografia: test
  1. M. A. Richards, "Fundamentals of Radar Signal Processing", McGraw-Hill Education, 2014, ISBN 0071798323
  2. B. Molina, E. Olivares, C. E. Palau and M. Esteve, "A Multimodal Fingerprint-Based Indoor Positioning System for Airports," in IEEE Access, vol. 6, pp. 10092-10106, 2018. otwiera się w nowej karcie
  3. J. W. Marck, A. Mohamoud, E. vd Houwen, R. van Heijster, "Indoor radar SLAM A radar application for vision and GPS denied environments," 2013 European Radar Conference, Nuremberg, 2013, pp. 471-474.
  4. G.A.Moeness, "Through-the-wall Radar Imaging", CRC Press, 2010 , ISBN 9781439814765
  5. T.Stupak, R.Wawruch, "Badanie właściwości detekcyjnych radaru pracującego na fali ciągłej" , Prace Wydziału Nawigacyjnego Akademii Morskiej w Gdyni, 2009, Wydawnictwo Akademii Morskiej w Gdyni otwiera się w nowej karcie
  6. H.M. Jol, "Ground Penetrating Radar Theory and Applications", Elsevier Science, 2009, ISBN 0444533486, pp. 70-85 otwiera się w nowej karcie
  7. RF Tutorial Lesson 17: Simulating a Frequency-Modulated Continuous-Wave (FMCW) Radar System [dostęp 29.11.2018] Dostępny: http://www.emagtech.com/wiki/index.php/RF_Tutorial_Lesson_17:_Simulating_a_Frequ ency-Modulated_Continuous-Wave_(FMCW)_Radar_System otwiera się w nowej karcie
  8. Ł.Kulas, M. Płotka, Przestrzenie Inteligentne, "Wprowadzenie do cyfrowego przetwarzania sygnałów w radiokomunikacji i technice radarowej"
  9. L. Nicolaescu and T. Oroian, "Radar cross section," 5th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service. TELSIKS 2001. Proceedings of Papers (Cat. No.01EX517), Nis, Yugoslavia, 2001, pp. 65-68 vol.1. otwiera się w nowej karcie
  10. Effective Aperture, [dostęp 29.11.2018] Dostępny: http://www.idc- online.com/technical_references/pdfs/electronic_engineering/Effective_Aperture.pdf otwiera się w nowej karcie
  11. Kissinger, Dietmar. (2012). Millimeter-Wave Receiver Concepts for 77 GHz Automotive Radar in Silicon-Germanium Technology. 10.1007/978-1-4614-2290-7. otwiera się w nowej karcie
  12. J. Park, A. A. Korosov, M. Babiker, S. Sandven and J. Won, "Efficient Thermal Noise Removal for Sentinel-1 TOPSAR Cross-Polarization Channel," in IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 3, pp. 1555-1565, March 2018. otwiera się w nowej karcie
  13. A.Jakubiak, "Metody klasyfikacji radiolokacyjnych zakłóceń biernych", Prace Naukowe Politechniki Warszawskiej. Elektronika, 2000, Oficyna Wydawnicza Politechniki Warszawskiej
  14. N. Nartasilpa, A. Salim, D. Tuninetti and N. Devroye, "Communications System Performance and Design in the Presence of Radar Interference," in IEEE Transactions on Communications, vol. 66, no. 9, pp. 4170-4185, Sept. 2018. otwiera się w nowej karcie
  15. Tan, Qinyan & Leung, Henry & Song, Yaoliang & Wang, Towe. (2014). Multipath Ghost Suppression for Through-the-Wall Radar. IEEE Transactions on Aerospace and Electronic Systems. 50. 2284-2292. 10.1109/TAES.2013.100241. otwiera się w nowej karcie
  16. R. H. W. Graves, "Detection of airborne targets by a space-based radar using multipath interference," Proceedings of the 1991 IEEE National Radar Conference, Los Angeles, CA, USA, 1991, pp. 46-49. otwiera się w nowej karcie
  17. Montgomery C.G., Principles of Microwave Circuits, The Institution of Engineering and Technology,1987. ISBN: 978-0863411007 otwiera się w nowej karcie
  18. Merrill Skolnik,"Radar Handbook 3rd Ed", McGraw-Hill, 2008. ISBN: 978-0071485470
  19. K-MC1 Radar Transceiver Product Details [dostęp 07.12.2018] https://www.rfbeam.ch/product?id=15 otwiera się w nowej karcie
  20. NI SMD-7620/7621 Stepper Drives and NI 73xx Motion Controllers [dostęp 29.11.2018] Dostępny: http://www.ni.com/pdf/manuals/376091a.pdf otwiera się w nowej karcie
  21. K-MC1 Radar Transceiver Datasheet [dostęp 29.11.2018] Dostępny: https://www.rfbeam.ch/files/products/15/downloads/Datasheet_K-MC1.pdf otwiera się w nowej karcie
  22. Y. Liu, B. Jiu, X. Xia, H. Liu and L. Zhang, "Height Measurement of Low-Angle Target Using MIMO Radar Under Multipath Interference," in IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 2, pp. 808-818, April 2018 SPIS RYSUNKÓW otwiera się w nowej karcie
  23. Rys. 2.1. Sygnały modulujące: a) sygnał piłokształtny b) rampa .......................................... 10 otwiera się w nowej karcie
  24. Rys. 3.4. Struktura systemu sprzętowego do obsługi ruchu obrotowego głowicy ................. 17 otwiera się w nowej karcie
  25. Rys. 4.6. Panel ustawień parametrów filtracji przestrzennej ................................................. 23 otwiera się w nowej karcie
  26. Rys. 5.1. Widmo uzyskane w programie ST200 Signal Explorer .......................................... 26 otwiera się w nowej karcie
  27. Rys. 5.4. Elementy radaru z głowicą obrotową złożone w całość ......................................... 28 otwiera się w nowej karcie
  28. Rys. 5.6. Obszar odpowiadający zakresowi 180 -270 stopni na planszy radaru .................. 29 otwiera się w nowej karcie
  29. Rys. 5.7. Plansza radaru podczas pomiaru dla sceny przedstawionej na rys. 5.5. i 5.6. ...... 29 otwiera się w nowej karcie
  30. Rys. 5.10. Pomiar rozdzielczości przy rozmieszczeniu reflektorów jeden za drugim ............ 30
Brak weryfikacji

wyświetlono 46 razy

Publikacje, które mogą cię zainteresować

Meta Tagi