Rapid multi-objective optimization of antennas using nested kriging surrogates and single-fidelity EM simulation models - Publikacja - MOST Wiedzy

Wyszukiwarka

Rapid multi-objective optimization of antennas using nested kriging surrogates and single-fidelity EM simulation models

Abstrakt

Ever increasing performance requirements make the design of contemporary antenna systems a complex and multi-stage process. One of the challenges, pertinent to the emerging application areas but also some of the recent trends (miniaturization, demands for multi-functionality, etc.), is the necessity of handling several performance figures such as impedance matching, gain, or axial ratio, often over multiple frequency bands. The fundamental difficulty is that most of the design objectives are at least partially conflicting. Hence, an improvement of one generally implies degradation of the others. The knowledge of available trade-offs is indispensable and can be acquired through multi-objective optimization (MO). Unfortunately, MO is computationally expensive when executed at the level of EM simulation models, otherwise necessary from the standpoint of antenna evaluation reliability. This paper proposes a computationally efficient framework for MO of antennas. Its keystone is the recently introduced nested kriging modeling technology, here adopted for identifying the design space region that contains the best design trade-offs, as well as for constructing a fast surrogate model to be processed by the MO algorithm. The technique is demonstrated through a two-objective optimization of a planar Yagi antenna (with respect to the impedance matching and gain enhancement) and three-objective design of a compact wideband antenna (with respect to the impedance matching, gain variability, and the footprint area). In both cases, the Pareto set is obtained at the low cost of a few hundred of antenna simulations, even though the optimization process is exclusively based on high-fidelity EM analysis.

Cytowania

  • 2 3

    CrossRef

  • 0

    Web of Science

  • 2 3

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 31 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
ENGINEERING COMPUTATIONS nr 37, strony 1591 - 1512,
ISSN: 0264-4401
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Kozieł S., Pietrenko-Dąbrowska A.: Rapid multi-objective optimization of antennas using nested kriging surrogates and single-fidelity EM simulation models// ENGINEERING COMPUTATIONS -Vol. 37,iss. 4 (2020), s.1591-1512
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1108/ec-05-2019-0200
Bibliografia: test
  1. Akinsolu, M.O., Liu, B., Grout, V., Lazaridis, P.I., Mognaschi, M.E. and Di Barba, P. (2019). "A parallel surrogate model assisted evolutionary algorithm for electromagnetic design optimization," IEEE Trans. Emerging Topics Comput. Intell., Vol. 3, No. 2, pp. 93- 105. otwiera się w nowej karcie
  2. Alsath, M.G.N. and Kanagasabai, M. (2015). "Compact UWB monopole antenna for automotive communications," IEEE Trans. Ant. Prop., Vol. 63, No. 9, pp. 4204-4208. otwiera się w nowej karcie
  3. An, S., Yang, S. and Mohammed, O.A. (2018). "A Kriging-assisted light beam search method for multi-objective electromagnetic inverse problems," IEEE Trans. Magn., Vol. 54, No. 3, pp. 1-4. otwiera się w nowej karcie
  4. Aravanis, A.I., Bhavani Shankar, M.R., Arapoglou, P., Danoy, G., Cottis, P.G. and Ottersten, B. (2015). "Power allocation in multibeam satellite systems: a two-stage multi- objective optimization," IEEE Trans. Wireless Comm., Vol. 14, No. 6, pp. 3171-3182. otwiera się w nowej karcie
  5. Bauernfeind, T., Baumgartner, P., Biro, O., Magele, C.A., Preis, K. and Torchio, R. (2017). otwiera się w nowej karcie
  6. PEEC-based multi-objective synthesis of non-uniformly spaced linear antenna arrays," IEEE Trans. Magn., Vol. 53, No. 6. otwiera się w nowej karcie
  7. Bhattacharya, R., Garg, R. and Bhattacharyya, T.K. (2016). "Design of a PIFA-driven compact Yagi-type pattern diversity antenna for handheld devices," IEEE Ant. Wireless Propag. Lett., Vol. 15, pp. 255-258, 2016. otwiera się w nowej karcie
  8. Borhani, M., Rezaei, P. and Valizade, A. (2016). "Design of a reconfigurable miniaturized microstrip antenna for switchable multiband systems," IEEE Ant. Wireless Propag. Lett., Vol. 15, pp. 822-825. otwiera się w nowej karcie
  9. Buckley, J.L., McCarthy, K.G., Loizou, L., O'Flynn, B. and O'Mathuna, C. (2016). "A dual-ISM-band antenna of small size using a spiral structure with parasitic element," IEEE Ant. Wireless Propag. Lett., Vol. 15, pp. 630-633. otwiera się w nowej karcie
  10. Chauhan, N.C., Kartikeyan, M.V. and Mittal, A. (2012). Soft computing methods for microwave and millimeter-wave design problems. Studies in Computational Intelligence, Vol. 392, Springer, Berlin, Heidelberg. otwiera się w nowej karcie
  11. Chen, Y.S. (2015). "Application of multi-objective fractional factorial design for ultra- wideband antennas with uniform gain and high-fidelity," IET Microwaves, Ant. Prop., Vol. 9, No. 15, pp. 1667-1672. otwiera się w nowej karcie
  12. Darvish, A. and Ebrahimzadeh, A. (2018). "Improved fruit-fly optimization algorithm and its applications in antenna array synthesis," IEEE Trans. Ant. Prop., Vol. 66, No. 4, pp. 1756-1766. otwiera się w nowej karcie
  13. Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York. otwiera się w nowej karcie
  14. Deb, K. and Gupta, H. (2006). "Introducing robustness in multi-objective optimization," EVol. Comput., Vol. 14, No. 4, pp. 463-494. otwiera się w nowej karcie
  15. Easum, J.A., Nagar, J. and Werner, D.H. (2017). "Multi-objective surrogate-assisted optimization applied to patch antenna design," Int. Symp. Ant. Prop., pp. 339-340, San Diego, USA. otwiera się w nowej karcie
  16. Easum, J.A., Nagar, J., Werner, P.L. and Werner, D.H. (2018). "Efficient multi-objective antenna optimization with tolerance analysis through the use of surrogate models," IEEE Trans. Ant. Propag., Vol. 66, No. 12, pp. 6706-6715. otwiera się w nowej karcie
  17. Fonseca, C.M. (1995). "Multiobjective genetic algorithms with application to control engineering problems," PhD thesis, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK. otwiera się w nowej karcie
  18. Goudos, S.K., Siakavara, K., Samaras, T., Vafiadis, E.E. and Sahalos, J.N. (2011) "Self- adaptive differential evolution applied to real-valued antenna and microwave design problems," IEEE Trans. Antennas Propag., Vol. 59, No. 4, pp. 1286-1298. otwiera się w nowej karcie
  19. Jacobs, J.P. (2012). "Bayesian support vector regression with automatic relevance determina-tion kernel for modeling of antenna input characteristics," IEEE Trans. Antennas. Prop., Vol. 60, No. 4, pp. 2114-2118. otwiera się w nowej karcie
  20. Jayaprakasam, S., Abdul Rahim, S.K., Leow, C.Y. and Mohd Yusof, M.F. (2014). "Beampatten optimization in distributed beamforming using multiobjective and metaheuristic method," IEEE Symp. Wireless Techn. App. (ISWTA), Kota Kinabalu, Malaysia, pp. 86-91. otwiera się w nowej karcie
  21. Kaneda, N., Deal, W.R., Qian, Y., Waterhouse, R. and Itoh, T. (2002). "A broad-band planar quasi Yagi antenna," IEEE Trans. Antennas Propag., Vol. 50, pp. 1158-1160. otwiera się w nowej karcie
  22. Koziel, S. and Bekasiewicz, A. (2015). "Rotational design space reduction for cost- efficient multi-objective antenna optimization," Europ. Conf. Ant. Prop., Lisbon, Portugal, pp. 1-4. otwiera się w nowej karcie
  23. Koziel, S. and Bekasiewicz, A. (2016). Multi-Objective Design of Antennas Using Surrogate Models, World Scientific, Singapore. otwiera się w nowej karcie
  24. Koziel, S. and Ogurtsov, S. (2013). "Multi-objective design of antennas using variable- fidelity simulations and surrogate models," IEEE Trans. Antennas Prop., Vol. 61, No. 12, pp. 5931-5939. otwiera się w nowej karcie
  25. Koziel, S. and Ogurtsov, S. (2014). "Design optimization of antennas using electromagnetic simulations and adaptive response correction technique," IET Microwaves, Antennas Prop., Vol. 8, No. 3, pp. 180-185. otwiera się w nowej karcie
  26. Koziel, S. and Pietrenko-Dabrowska, A. (2019). "Performance-based nested surrogate modeling of antenna input characteristics," IEEE Trans. Ant. Prop., Vol. 67. otwiera się w nowej karcie
  27. Koziel, S. and Sigurdsson, A.T. (2017) "Triangulation-based constrained surrogate modeling of antennas," IEEE Trans. Ant. Prop., Vol. 66, No. 8, pp. 4170-4179. otwiera się w nowej karcie
  28. Koziel, S., Bekasiewicz, A. and Zieniutycz, W. (2014a). "Expedited EM-driven multi- objective antenna design in highly-dimensional parameter spaces," IEEE Antennas and Wireless Prop. Lett., Vol. 13, pp. 631-634. otwiera się w nowej karcie
  29. Koziel, S., Cheng, Q.S. and Bandler, J.W. (2008). "Space mapping," IEEE Microwave Magazine, Vol. 9, No. 6, pp. 105-122. otwiera się w nowej karcie
  30. Koziel, S., Cheng, Q.S. and Li, S. (2018). "Optimization-driven antenna design framework with multiple performance constraints," Int. J. RF Microwave CAE, Vol. 28, No. 4. otwiera się w nowej karcie
  31. Koziel, S., Bekasiewicz, A., Couckuyt, I. and Dhaene, T. (2014b). "Efficient multi- objective simulation-driven antenna design using co-kriging," IEEE Trans. Antennas Prop., Vol. 62, No. 11, pp. 5900-5905. otwiera się w nowej karcie
  32. Liu, B., Akinsolu, M.O., Ali, N. and Abd-Alhameed, R. (2018). "Efficient global optimisation of microwave antennas based on a parallel surrogate model-assisted evolutionary algorithm," IET Microwaves, Antennas & Propagation, Vol. 13, No. 2, pp. 149-155. otwiera się w nowej karcie
  33. Liu, J., Esselle, K.P., Hay, S.G. and Zhong, S. (2014). "Effects of printed UWB antenna miniaturization on pulse fidelity and pattern stability," IEEE Trans. Ant. Prop., Vol. 62, No. 8, pp. 3903-3910. otwiera się w nowej karcie
  34. Lyu, W., Yang, F., Yan, C., Zhou, D. and Zeng, X. (2018). "Multi-objective Bayesian optimization for analog/RF circuit synthesi," ACM/ESDA/IEEE Design Autom. Conf., San Francisco, USA. otwiera się w nowej karcie
  35. Matekovits, L., Laza, V.A. and Vecchi, G. (2007). "Analysis of large complex structures with the synthetic-functions approach," IEEE Trans. Ant. Propag., Vol. 55, No. 9, pp. 2509-2521, 2007. otwiera się w nowej karcie
  36. Mishra, S., Yadav, R.N., and Singh, R.P. (2015). "Directivity estimations for short dipole anten-na arrays using radial basis function neural networks," IEEE Ant. Wireless Propag. Lett., Vol. 14, pp. 1219-1222. otwiera się w nowej karcie
  37. Nagar, J. and Werner, D.H. (2018). "Multi-objective optimization for electromagnetics and optics: an introduction and tutorial," IEEE Ant. Propag. Mag., Vol. 60, No. 6, pp. 58-71. otwiera się w nowej karcie
  38. Na, W., Feng, F., Zhang., C., and Zhang., Q.J. (2017). "A unified automated parametric modeling algorithm using knowledge-based neural network and l1 optimization," IEEE Trans. Microwave Theory Techn., Vol. 65, no. 3, pp. 726-745. otwiera się w nowej karcie
  39. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidynathan, R., Tucker, P.K. (2005). "Surrogate based analysis and optimization", Prog. Aerospace Sci., Vol. 41, pp. 1-28. otwiera się w nowej karcie
  40. Rasmussen, C.E., and Williams, C.K.I. (2006). Gaussian processes for machine learning. MIT Press, Cambridge, MA, USA. otwiera się w nowej karcie
  41. Rinaldo, R., Maufroid, X. and Garcia, R.C. (2005). "Non-uniform bandwidth and power allocation in multi-beam broadband satellite systems", Proc. 23rd AIAA ICSSC, Rome, Italy.
  42. Simpson, T.W., Pelplinski, J.D., Koch, P.N. and Allen, J.K. (2001). "Metamodels for computer-based engineering design: survey and recommendations", Engineering with Computers, Vol. 17, pp. 129-150. otwiera się w nowej karcie
  43. Soltani, S., Lotfi, P. and Murch, R.D. (2017). "A dual-band multiport MIMO slot antenna for WLAN applications," IEEE Ant. Wireless Propag. Lett., Vol. 16, pp. 529-532. otwiera się w nowej karcie
  44. Stutzman, W.L. and Thiele, G.A. (2012). Antenna Theory and Design, 3rd ed., Wiley, New York. otwiera się w nowej karcie
  45. Szini, I., Tatomirescu, A. and Pedersen, G.F. (2015). "On small terminal MIMO antennas, harmonizing characteristic modes with ground plane geometry," IEEE Trans. Ant. Propag., Vol. 63, No. 4, pp. 1487-1497. otwiera się w nowej karcie
  46. Tian, B., Li, Z. and Wang, C. (2010). "Boresight gain optimization of an UWB monopole antenna using FDTD and genetic algorithm," IEEE Int. Conf. Ultra-Wideband, Nanjing, China, pp. 1-4. otwiera się w nowej karcie
  47. de Villiers, D.I.L., Couckuyt, I. and Dhaene, T. (2017). "Multi-objective optimization of reflector antennas using kriging and probability of improvement", Int. Symp. Ant. Prop., San Diego, USA, pp. 985-986. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 108 razy

Publikacje, które mogą cię zainteresować

Meta Tagi