Rapid optimization of compact microwave passives using kriging surrogates and iterative correction - Publikacja - MOST Wiedzy

Wyszukiwarka

Rapid optimization of compact microwave passives using kriging surrogates and iterative correction

Abstrakt

Design of contemporary microwave components is—in a large part—based on full-wave electromagnetic (EM) simulation tools. The primary reasons for this include reliability and versatility of EM analysis. In fact, for many microwave structures, notably compact components, EM-driven parameter tuning is virtually imperative because traditional models (analytical or network equivalents) are unable to account for the cross-coupling effects, strongly present in miniaturized layouts. At the same time, the cost of simulation-based design procedures may be significant due to a typically large number of evaluations of the circuit at hand involved. In this paper, a novel approach to expedited design closure of compact microwave passives is presented. The proposed procedure incorporates available designs (e.g., existing from the previous design work on the same structure) in the form of the kriging interpolation models, utilized to yield a reasonable initial design and to accelerate its further refinement. An important component of the framework is an iterative correction procedure that feeds the accumulated discrepancies between the target and the actual design objective values back to the kriging surrogate to produce improved predictions. The efficacy of our methodology is demonstrated using two miniaturized impedance matching transformers with the optimized designs obtained at the cost of a few EM simulations of the respective circuits. The relevance of the iterative correction is corroborated through the comparative studies showing its superiority over rudimentary gradient-based refinement.

Cytowania

  • 6

    CrossRef

  • 5

    Web of Science

  • 5

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 12 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
IEEE Access nr 8, strony 53587 - 53594,
ISSN: 2169-3536
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Kozieł S., Pietrenko-Dąbrowska A.: Rapid optimization of compact microwave passives using kriging surrogates and iterative correction// IEEE Access -Vol. 8, (2020), s.53587-53594
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/access.2020.2981249
Bibliografia: test
  1. F. Feng, C. Zhang, W. Na, J. Zhang, W. Zhang, and Q.-J. Zhang, ''Adaptive feature zero assisted surrogate-based EM optimization for microwave filter design,'' IEEE Microw. Wireless Compon. Lett., vol. 29, no. 1, pp. 2-4, Jan. 2019. otwiera się w nowej karcie
  2. Z. Medina, A. Reyna, M. A. Panduro, and O. Elizarraras, ''Dual-band performance evaluation of time-modulated circular geometry array with microstrip-fed slot antennas,'' IEEE Access, vol. 7, pp. 28625-28634, 2019. otwiera się w nowej karcie
  3. Z. Chen, Y. Xu, B. Zhang, T. Chen, T. Gao, and R. Xu, ''A GaN HEMTs nonlinear large-signal statistical model and its application in S-band power amplifier design,'' IEEE Microw. Wireless Compon. Lett., vol. 26, no. 2, pp. 128-130, Feb. 2016. otwiera się w nowej karcie
  4. J. Zhang, C. Zhang, F. Feng, W. Zhang, J. Ma, and Q.-J. Zhang, ''Polyno- mial chaos-based approach to yield-driven EM optimization,'' IEEE Trans. Microw. Theory Techn., vol. 66, no. 7, pp. 3186-3199, Jul. 2018. otwiera się w nowej karcie
  5. A. Contreras, M. Ribo, L. Pradell, V. Raynal, I. Moreno, M. Combes, and M. Ten, ''Compact fully uniplanar bandstop filter based on slow-wave multimodal CPW resonators,'' IEEE Microw. Wireless Compon. Lett., vol. 28, no. 9, pp. 780-782, Sep. 2018. otwiera się w nowej karcie
  6. H. Zhu and A. M. Abbosh, ''A compact tunable directional coupler with continuously tuned differential phase,'' IEEE Microw. Wireless Compon. Lett., vol. 28, no. 1, pp. 19-21, Jan. 2018. otwiera się w nowej karcie
  7. C. W. Byeon and C. S. Park, ''Low-loss compact millimeter-wave power divider/combiner for phased array systems,'' IEEE Microw. Wireless Com- pon. Lett., vol. 29, no. 5, pp. 312-314, May 2019. otwiera się w nowej karcie
  8. C.-F. Chen, S.-F. Chang, and B.-H. Tseng, ''Compact microstrip dual-band quadrature coupler based on coupled-resonator technique,'' IEEE Microw. Wireless Compon. Lett., vol. 26, no. 7, pp. 487-489, Jul. 2016. otwiera się w nowej karcie
  9. S. Koziel and P. Kurgan, ''Inverse modeling for fast design optimization of small-size rat-race couplers incorporating compact cells,'' Int. J. RF Microw. Comput.-Aided Eng., vol. 28, no. 5, Jun. 2018, Art. no. e21240. otwiera się w nowej karcie
  10. H. Jin, Y. Zhou, Y. M. Huang, S. Ding, and K. Wu, ''Miniaturized broad- band coupler made of slow-wave half-mode substrate integrated waveg- uide,'' IEEE Microw. Wireless Compon. Lett., vol. 27, no. 2, pp. 132-134, Feb. 2017. otwiera się w nowej karcie
  11. Z. Zeng, Y. Yao, and Y. Zhuang, ''A wideband common-mode suppres- sion filter with compact-defected ground structure pattern,'' IEEE Trans. Electromagn. Compat., vol. 57, no. 5, pp. 1277-1280, Oct. 2015. otwiera się w nowej karcie
  12. H.-W. Wu and C.-T. Chiu, ''Design of compact multi-layered quad-band bandpass filter,'' IEEE Microw. Wireless Compon. Lett., vol. 26, no. 11, pp. 879-881, Nov. 2016. otwiera się w nowej karcie
  13. R. Gomez-Garcia, J. Rosario-De Jesus, and D. Psychogiou, ''Multi-band bandpass and bandstop RF filtering couplers with dynamically-controlled bands,'' IEEE Access, vol. 6, pp. 32321-32327, 2018. otwiera się w nowej karcie
  14. R. K. Barik, R. Rajender, and S. S. Karthikeyan, ''A miniaturized wideband three-section branch-line hybrid with harmonic suppression using coupled line and open-ended stubs,'' IEEE Microw. Wireless Compon. Lett., vol. 27, no. 12, pp. 1059-1061, Dec. 2017. otwiera się w nowej karcie
  15. H. Malhi and M. H. Bakr, ''Geometry evolution of microwave filters exploiting self-adjoint sensitivity analysis,'' in Proc. Int. Conf. Numeri- cal Electromagn. Multiphys. Mod. Opt. (NEMO), Ottawa, ON, Canada, Aug. 2015, pp. 11-14. otwiera się w nowej karcie
  16. S. Koziel, Q. S. Cheng, J. W. Bandler, and S. Ogurtsov, ''Rapid electromagnetic-based microwave design optimisation exploiting shape- preserving response prediction and adjoint sensitivities,'' IET Microw., Antennas Propag., vol. 8, no. 10, pp. 775-781, Jul. 2014. otwiera się w nowej karcie
  17. A. Pietrenko-Dabrowska and S. Koziel, ''Computationally-efficient design optimisation of antennas by accelerated gradient search with sensitivity and design change monitoring,'' IET Microw., Antennas Propag., vol. 14, no. 2, pp. 165-170, Feb. 2020. otwiera się w nowej karcie
  18. A. Pietrenko-Dabrowska and S. Koziel, ''Numerically efficient algorithm for compact microwave device optimization with flexible sensitivity updat- ing scheme,'' Int. J. RF Microw. Comput.-Aided Eng., vol. 29, no. 7, Jul. 2019, Art. no. e21714. otwiera się w nowej karcie
  19. H. M. Torun and M. Swaminathan, ''High-dimensional global optimiza- tion method for high-frequency electronic design,'' IEEE Trans. Microw. Theory Techn., vol. 67, no. 6, pp. 2128-2142, Jun. 2019. otwiera się w nowej karcie
  20. J. E. Rayas-Sanchez, ''Power in simplicity with ASM: Tracing the aggres- sive space mapping algorithm over two decades of development and engineering applications,'' IEEE Microw. Mag., vol. 17, no. 4, pp. 64-76, Apr. 2016. otwiera się w nowej karcie
  21. S. Koziel and A. Bekasiewicz, ''Rapid microwave design optimization in frequency domain using adaptive response scaling,'' IEEE Trans. Microw. Theory Techn., vol. 64, no. 9, pp. 2749-2757, Sep. 2016. otwiera się w nowej karcie
  22. S. Koziel, ''Fast simulation-driven antenna design using response-feature surrogates,'' Int. J. RF Microw. Comput.-Aided Eng., vol. 25, no. 5, pp. 394-402, Jun. 2015. otwiera się w nowej karcie
  23. S. J. Mahon and D. J. Skellern, ''Procedure for inverse modelling of GaAs/AlGaAs HEMT structures from DC I/V characteristic curves,'' Elec- tron. Lett., vol. 27, no. 1, pp. 81-82, Jan. 1991. otwiera się w nowej karcie
  24. S. Koziel and A. Bekasiewicz, ''Expedited geometry scaling of compact microwave passives by means of inverse surrogate modeling,'' IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 4019-4026, Dec. 2015. otwiera się w nowej karcie
  25. S. Koziel and A. Bekasiewicz, ''Inverse and forward surrogate models for expedited design optimization of unequal-power-split patch couplers,'' Metrol. Meas. Syst., vol. 26, no. 3, pp. 463-473, 2019. otwiera się w nowej karcie
  26. N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidynathan, and P. K. Tucker, ''Surrogate-based analysis and optimization,'' Progr. Aerosp. Sci., vol. 41, no. 1, pp. 1-28, Jan. 2005. otwiera się w nowej karcie
  27. A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region Methods (MPS- SIAM Series on Optimization), Philadelphia, PA, USA: SIAM, 2000. otwiera się w nowej karcie
  28. C. G. Broyden, ''A class of methods for solving nonlinear simultaneous equations,'' Math. Comput., vol. 19, no. 92, pp. 577-593, 1965. SLAWOMIR KOZIEL (Senior Member, IEEE) received the M.Sc. and Ph.D. degrees in electronic engineering from the Gdańsk University of Tech- nology, Poland, in 1995 and 2000, respectively, the M.Sc. degrees in theoretical physics and math- ematics, in 2000 and 2002, respectively, and the Ph.D. degree in mathematics from the Univer- sity of Gdańsk, Poland, in 2003. He is currently a Professor with the Department of Technology, Reykjavik University, Iceland. His research inter- ests include CAD and modeling of microwave and antenna structures, simulation-driven design, surrogate-based optimization, space mapping, circuit theory, analog signal processing, evolutionary computation, and numerical analysis. otwiera się w nowej karcie
  29. ANNA PIETRENKO-DABROWSKA (Member, IEEE) received the M.Sc. and Ph.D. degrees in electronic engineering from the Gdańsk Univer- sity of Technology, Poland, in 1998 and 2007, respectively. She is currently an Associate Pro- fessor with the Gdańsk University of Technology. Her research interests include simulation-driven design, design optimization, control theory, mod- eling of microwave and antenna structures, and numerical analysis.
Weryfikacja:
Politechnika Gdańska

wyświetlono 12 razy

Publikacje, które mogą cię zainteresować

Meta Tagi