Real and imaginary motion classification based on rough set analysis of EEG signals for multimedia applications - Publikacja - MOST Wiedzy

Wyszukiwarka

Real and imaginary motion classification based on rough set analysis of EEG signals for multimedia applications

Abstrakt

Rough set-based approach to the classification of EEG signals of real and imaginary motion is presented. The pre-processing and signal parametrization procedures are described, the rough set theory is briefly introduced, and several classification scenarios and parameters selection methods are proposed. Classification results are provided and discussed with their potential utilization for multimedia applications controlled by the motion intent. Accuracy metrics of classification for real and imaginary motion obtained with different parameter sets are compared. Results of experiments employing recorded EEG signals are commented and further research directions are proposed.

Cytowania

  • 1 6

    CrossRef

  • 1 2

    Web of Science

  • 1 7

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 31 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
MULTIMEDIA TOOLS AND APPLICATIONS nr 76, strony 25697 - 25711,
ISSN: 1380-7501
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Szczuko P.: Real and imaginary motion classification based on rough set analysis of EEG signals for multimedia applications// MULTIMEDIA TOOLS AND APPLICATIONS. -Vol. 76, (2017), s.25697-25711
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s11042-017-4458-7
Bibliografia: test
  1. C6 (388), Sum alpha, CP4 (378), Min delta, FCZ (367), Mean delta, FC5 (340), Min delta, C4 (337), Max beta, C1 (327), Min delta, CP5 (326), Sum delta, FC6 (316), Var theta, CP2 (310), Var alpha, FCZ (304), Sum gamma, FC1 (299), Var theta, CP6 (290), Min delta, CP2 (288), Min delta, C6 (284), Max gamma, C3 (279), Min delta, C5 (277), Sum theta, FC3 (277), Min delta, FC3 (276), Var gamma, C6 (275), Min beta, C1 (274), Min delta, FC2 (273), Sum beta, FC4 (272), Sum gamma, FC5 (269), Min delta, C3 (268), Var beta, CZ (268), Min gamma, C4 (260), Sum theta, FCZ (259), Var alpha, FC3 (259), Max gamma, FCZ (258), Var theta, C4 (258), Min delta, FC4 (254), Var theta, FC6 (253), Max beta, C4 (252), Max gamma, FC2 (250), Min delta, CP4 (248), Min delta, CPZ (248), Max theta, FC1 (246), Sum beta, FC2 (246), Max gamma, C1 (245), Sum alpha, CP2 (244), Sum gamma, C4 (239), Max gamma, FC5 (238), Min delta, CP3 (238), Var theta, CP1 (236), Mean theta, FC3 (231), Max alpha, FC6 (229), Var theta, CZ (229), Var theta, CZ (317), Sum theta, FCZ (304), Sum delta, FC6 (298), Sum gamma, FC5 (280), Mean delta, FC6 (276), Mean gamma, C6 (276), Max beta, CP4 (274), Max beta, CP2 (266), mean gamma, CPZ (263), Max gamma, FC2 (252), Max gamma, C1 (246), Max beta, C1 (245), Var theta, C1 (241), Max delta, FC6 (240), Sum beta, CP4 (240), Sum gamma, FC1 (240), Var theta, CP2 (239), Min delta, C3 (237), Sum gamma, FC4 (233), Max beta, CP3 (231), Sum beta, C5 (230), Var theta, CP5 (224), Min delta, FC5 (223), Max gamma, FC3 (222), Min delta, CZ (221), Mean delta, FC5 (220), Sum beta, CP5 (220), Sum alpha, CP5 (219), Sum FC3-FC4 _ gamma (215), Var theta, FC4 (213), Var alpha, FCZ (209), Min delta, FC3 (208), Var alpha, FC3 (207), Sum alpha, C6 (203), Min delta, CP1 (202), Min delta, CP2 (201), Sum FC1-FC2 _ gamma (200), Sum gamma, C4 (200), Sum gamma, FC2 (200), Mean gamma, CP1 (198), Min alpha, FC4 (198), Sum alpha, CP6 (198), Sum beta, FC4 (194), Mean beta, CZ (193), Min delta, C5 (193), Var alpha, FC6 (191), Var theta, C4 (191), Sum alpha, C3 (190), Max beta, CZ (189), Max beta, C2 otwiera się w nowej karcie
  2. Var theta, FCZ (378), Sum theta, FC3 (258), Var theta, C2 (232), Min delta, CZ (220), Sum theta, FC5 (219), Max beta, C1 (219), Min theta, FC5 (218), Var alpha, FC4 (210), Sum alpha, CP5 (205), Sum beta, FC3 (202), Mean theta, FC1 (198), Min delta, C5 (197), Min beta, C1 (194), Mean beta, CZ (194), Var theta, CP4 (193), Min delta, FC4 (190), Min delta, FC5 (189), Var theta, C4 (187), Sum beta, CZ (180), Min gamma, C4 (180), Var gamma, C6 (180), Mean gamma, C6 (179), Var theta, CPZ (175), Mean theta, FC5 (169), Max gamma, C4 (163), Min delta, CP5 (162), Sum CP1-CP2, alpha (159), Var theta, CP2 (157), Sum beta, FC1 (153), Var alpha, FC2 (152), Max gamma, FC2 (148), Var theta, CZ (143), Var theta, CP5 (140), Sum theta, FC1 (139), Min alpha, FC6 (139), Min delta, FC6 (138), Min delta, CP6 (138), Var theta, FC1 (138), Max beta, CP2 (137), Mean gamma, C4 (137), Var theta, C3 (135), Max gamma, C1 (135), Sum beta, FC6 (134), Mean gamma, CP5 (132), Min delta, FC1 (131), Min delta, C6 (131), Min alpha, FC4 (129), Var theta, FC4 (127), Var theta, C1 (127), Mean beta, C1 (127) otwiera się w nowej karcie
  3. Alhaddad MJ, Kamel MI, Makary MM et al (2014) Spectral subtraction denoising preprocessing block to improve P300-based brain-computer interfacing. Biomed Eng Online 13:36. doi:10.1186/1475-925X-13-36 otwiera się w nowej karcie
  4. Alotaiby T, El-Samie FE, Alshebeili SA et al (2015) A review of channel selection algorithms for EEG signal processing. EURASIP J Adv Signal Process 2015:66. doi:10.1186/s13634-015-0251-9 otwiera się w nowej karcie
  5. BCI2000 instrumentation system project webpage. www.bci2000.org. Accessed 22 June 2016 otwiera się w nowej karcie
  6. Bek J, Poliakoff E, Marshall H, Trueman S, Gowen E (2016) Enhancing voluntary imitation through attention and motor imagery. Exp Brain Res 234:1819-1828. doi:10.1007/s00221-016-4570-3 otwiera się w nowej karcie
  7. Bhattacharyya S, Konar A, Tibarewala DN (2014) Motor imagery, P300 and error-related EEG-based robot arm movement control for rehabilitation purpose. Med Biol Eng Comput 52:1007. doi:10.1007/s11517- 014-1204-4 otwiera się w nowej karcie
  8. Chen S, Lai Y (2014) A signal-processing-based technique for P300 evoked potential detection with the applications into automated character recognition. EURASIP J Adv Signal Process 2014:152. doi:10.1186 /1687-6180-2014-152 otwiera się w nowej karcie
  9. Choi K (2013) Electroencephalography (EEG)-based neurofeedback training for brain-computer interface (BCI). Exp Brain Res 231:351-365. doi:10.1007/s00221-013-3699-6 otwiera się w nowej karcie
  10. Corralejo R, Nicolas-Alonso LF, Alvarez D, Hornero R (2014) A P300-based brain-computer interface aimed at operating electronic devices at home for severely disabled people. Med Biol Eng Comput 52:861- 872. doi:10.1007/s11517-014-1191-5 otwiera się w nowej karcie
  11. Diez PF, Mut VA, Avila Perona EM et al (2011) Asynchronous BCI control using high-frequency SSVEP. J NeuroEngineering Rehabil 8:39. doi:10.1186/1743-0003-8-39 otwiera się w nowej karcie
  12. Doud AJ, Lucas JP, Pisansky MT, He B (2011) Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface. PLoS One 6(10):e26322. doi:10.1371/journal. pone.0026322 otwiera się w nowej karcie
  13. Faller J, Scherer R, Friedrich E, Costa U, Opisso E, Medina J, Müller-Putz GR (2014) Non-motor tasks improve adaptive brain-computer interface performance in users with severe motor impairment. Front Neurosci 8. doi:10.3389/fnins.2014.00320 otwiera się w nowej karcie
  14. Gao J, Lin P, Yang Y, Wang P, Zheng C (2010) Real-time removal of ocular artifacts from EEG based on independent component analysis and manifold learning. Neural Comput & Applic 19:1217-1226. doi:10.1007/s00521-010-0370-z otwiera się w nowej karcie
  15. Gardener M (2012) Beginning R: the statistical programming language. See also: https://cran.r-project. org/manuals.html. Accessed 22 June 2016
  16. Ge S, Han M, Hong X (2014) A fully automatic ocular artifact removal from EEG based on fourth-order tensor method. Biomed En Lett 4:55. doi:10.1007/s13534-014-0118-2 otwiera się w nowej karcie
  17. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE (2000) PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 101:215-220. ocirc.ahajournals. org/cgi/content/full/101/23/e215. Dataset available at: physionet.org/pn4/eegmmidb. Accessed 22 June 2016 otwiera się w nowej karcie
  18. He B, Gao S, Yuan H, Wolpaw JR (2012) Brain-Computer Interfaces. He B (ed.) Neural Engineering, 87- 151, doi: 10.1007/978-1-4614-5227-0_2 otwiera się w nowej karcie
  19. He B, Baxter B, Edelman BJ, Cline C, Ye W (2015) Noninvasive brain-computer interfaces based on sensorimotor rhythms. Proc IEEE 103:907-925. doi:10.1109/JPROC.2015.2407272 otwiera się w nowej karcie
  20. Iscan Z (2011) Detection of P300 wave from EEG data for brain-computer interface applications. Pattern Recognit Image Anal 21:481 otwiera się w nowej karcie
  21. Janusz A, Stawicki S (2011) Applications of approximate reducts to the feature selection problem. Proceedings of International Conference on Rough Sets and Knowledge Technology (RSKT) 6954:45-50 otwiera się w nowej karcie
  22. Jung TP, Makeig S, Humphries C, Lee TW, McKeown MJ, Iragui V, Sejnowski TJ (2000) Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37:163-178 otwiera się w nowej karcie
  23. Kasahara T, Terasaki K, Ogawa Y et al (2012) The correlation between motor impairments and event-related desynchronization during motor imagery in ALS patients. BMC Neurosci 13:66. doi:10.1186/1471-2202-13-66 otwiera się w nowej karcie
  24. Krepki R, Blankertz B, Curio G, Muller KR (2007) The berlin brain-computer Interface (BBCI) -towards a new communication channel for online control in gaming applications. Multimed Tools Appl 33:73-90. doi:10.1007/s11042-006-0094-3 otwiera się w nowej karcie
  25. Kumar SU, Inbarani H (2016) PSO-based feature selection and neighborhood rough set-based classification for BCI multiclass motor imagery task. Neural Comput Applic:1-20, doi:10.1007/s00521-016-2236-5 otwiera się w nowej karcie
  26. LaFleur K, Cassady K, Doud AJ, Shades K, Rogin E, He B (2013) Quadcopter control in three-dimensional space using a noninvasive motor imagery based brain-computer interface J Neural Eng 10, doi:10.1088 /1741-2560/10/4/046003 otwiera się w nowej karcie
  27. Leeb R, Pfurtscheller G (2004) Walking through a Virtual City by Thought. Proc. 26th Annual International Conference of the IEEE EMBS, doi:10.1109/IEMBS.2004.1404251 otwiera się w nowej karcie
  28. Leeb R, Scherer R, Lee F, Bischof H, Pfurtscheller G (2004) Navigation in Virtual Environments through Motor Imagery. Proc. 9th Computer Vision Winter Workshop, 99-108
  29. Li P, Xu P, Zhang R, Guo L, Yao D (2013) L1 norm based common spatial patterns decomposition for scalp EEG BCI. Biomed Eng Online 12:77. doi:10.1186/1475-925X-12-77 otwiera się w nowej karcie
  30. Li Y, Zhou G, Graham D, Holtzhauer A (2016) Towards an EEG-based brain-computer interface for online robot control. Multimed Tools Appl 75:7999-8017. doi:10.1007/s11042-015-2717-z otwiera się w nowej karcie
  31. Marple SL (1999) Computing the discrete-time analytic signal via FFT. IEEE Trans Signal Proc 47:2600- 2603 otwiera się w nowej karcie
  32. Nakayashiki K, Saeki M, Takata Y et al (2014) Modulation of event-related desynchronization during kinematic and kinetic hand movements. J NeuroEngineering Rehabil 11:90. doi:10.1186/1743-0003-11-90 otwiera się w nowej karcie
  33. Ortega J, Asensio-Cubero J, Gan JQ, Ortiz A (2016) Classification of motor imagery tasks for BCI with multiresolution analysis and multiobjective feature selection. Biomed Eng Online 15. doi:10.1186/s12938- 016-0178-x otwiera się w nowej karcie
  34. Pawlak Z (1982) Rough sets. Int J Computer Information Sciences 11:341-356 otwiera się w nowej karcie
  35. Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain-computer communication. Proc IEEE 89: 1123-1134. doi:10.1109/5.939829 otwiera się w nowej karcie
  36. Pfurtscheller G, Brunner C, Schlogl A, Lopes FH (2006) Mu rhythm (de)synchronization and EEG single- trial classification of different motor imagery tasks. NeuroImage 31:153-159 otwiera się w nowej karcie
  37. Postelnicu C, Talaba D (2013) P300-based brain-neuronal computer interaction for spelling applications. IEEE Trans Biomed Eng 60:534-543. doi:10.1109/TBME.2012.2228645 otwiera się w nowej karcie
  38. Riza SL, Janusz A, Ślęzak D, Cornelis C, Herrera F, Benitez JM, Bergmeir C, Stawicki S (2015) RoughSets: Data Analysis Using Rough Set and Fuzzy Rough Set Theories https://github.com/janusza/RoughSets. Accessed 22 June 2016. https://cran.r-project.org/web/packages/RoughSets/index.html. Accessed 22 June 2016 otwiera się w nowej karcie
  39. Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR (2004) BCI2000: a general-purpose brain-computer Interface (BCI) system. IEEE Trans Biomed Eng 51:1034-1043 otwiera się w nowej karcie
  40. Shan H, Xu H, Zhu S, He B (2015) A novel channel selection method for optimal classification in different motor imagery BCI paradigms. Biomed Eng Online 14. doi:10.1186/s12938-015-0087-4 otwiera się w nowej karcie
  41. Silva J, Torres-Solis J, Chau T et al (2008) A novel asynchronous access method with binary interfaces. J NeuroEngineering Rehabil 5:24. doi:10.1186/1743-0003-5-24 otwiera się w nowej karcie
  42. Solana A, Martinez K, Hernandez-Tamames JA, San Antonio-Arce V, Toledano R et al (2016) Altered brain rhythms and functional network disruptions involved in patients with generalized fixation-off epilepsy. Brain Imaging and Behavior 10:373-386. doi:10.1007/s11682-015-9404-6 otwiera się w nowej karcie
  43. Suh D, Sang Cho H, Goo J, Park KS, Hahn M (2006) Virtual Navigation System for the disabled by Motor Imagery. Advances in Computer, Information, and Systems Sciences, and Engineering, 143-148, doi:10.1007/1-4020-5261-8_24 otwiera się w nowej karcie
  44. Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: A User-Friendly Application for MEG/EEG Analysis. Computational Intelligence and Neuroscience 2011:id879716 otwiera się w nowej karcie
  45. Tesche CD, Uusitalo MA, Ilmoniemi RJ, Huotilainen M, Kajola M, Salonen O (1995) Signal-space projections of MEG data characterize both distributed and well-localized neuronal sources. Electroencephalogr Clin Neurophysiol 95:189-200 otwiera się w nowej karcie
  46. Tukey JW (1977) Exploratory data analysis. Addison-Wesley
  47. Ungureanu M, Bigan C, Strungaru R, Lazarescu V (2004) Independent component analysis applied in biomedical signal processing. Measurement Science Review 4:1-8 otwiera się w nowej karcie
  48. Uusitalo MA, Ilmoniemi RJ (1997) Signal-space projection method for separating MEG or EEG into components. Med Biol Eng Comput 35:135-140 otwiera się w nowej karcie
  49. Velasco-Alvarez F, Ron-Angevin R, Lopez-Gordo MA (2013) BCI-based navigation in virtual and real environments. IWANN, LNCS 7903:404-412 otwiera się w nowej karcie
  50. Vidaurre C, Blankertz B (2010) Towards a cure for BCI illiteracy. Brain Topogr 23:194-198. doi:10.1007 /s10548-009-0121-6 otwiera się w nowej karcie
  51. Wu CC, Hamm JP, Lim VK, Kirk IJ (2016) Mu rhythm suppression demonstrates action representation in pianists during passive listening of piano melodies. Exp Brain Res 234:2133-2139. doi:10.1007/s00221- 016-4615-7 otwiera się w nowej karcie
  52. Xia B, Li X, Xie H et al (2013) Asynchronous brain-computer Interface based on steady-state visual-evoked potential. Cogn Comput 5:243. doi:10.1007/s12559-013-9202-7 otwiera się w nowej karcie
  53. Yang J, Singh H, Hines E, Schlaghecken F, lliescu D, et al. (2012) Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach. Artif Intell Med 55:117-126, doi:10.1016/j.artmed.2012.02.001 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 69 razy

Publikacje, które mogą cię zainteresować

Meta Tagi