Real‐Time PPG Signal Conditioning with Long Short‐Term Memory (LSTM) Network for Wearable Devices - Publikacja - MOST Wiedzy

Wyszukiwarka

Real‐Time PPG Signal Conditioning with Long Short‐Term Memory (LSTM) Network for Wearable Devices

Abstrakt

This paper presents an algorithm for real‐time detection of the heart rate measured on a person’s wrist using a wearable device with a photoplethysmographic (PPG) sensor and accelerometer. The proposed algorithm consists of an appropriately trained LSTM network and the Time‐Domain Heart Rate (TDHR) algorithm for peak detection in the PPG waveform. The Long Short‐Term Memory (LSTM) network uses the signals from the accelerometer to improve the shape of the PPG input signal in a time domain that is distorted by body movements. Multiple variants of the LSTM network have been evaluated, including taking their complexity and computational cost into consideration. Adding the LSTM network caused additional computational effort, but the performance results of the whole algorithm are much better, outperforming the other algorithms from the literature.

Cytowania

  • 9

    CrossRef

  • 0

    Web of Science

  • 9

    Scopus

Cytuj jako

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
SENSORS nr 22,
ISSN: 1424-8220
Język:
angielski
Rok wydania:
2022
Opis bibliograficzny:
Wójcikowski M.: Real‐Time PPG Signal Conditioning with Long Short‐Term Memory (LSTM) Network for Wearable Devices// SENSORS -Vol. 22,iss. 1 (2022), s.164-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/s22010164
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 164 razy

Publikacje, które mogą cię zainteresować

Meta Tagi