Regulacja epigenetyczna a potencjał regeneracyjny ssaków. Badania globalnych profili metylacji w tkankach dorosłej myszy MRL/MpJ i w sercach noworodków myszy C57BL/6J. - Publikacja - MOST Wiedzy

Wyszukiwarka

Regulacja epigenetyczna a potencjał regeneracyjny ssaków. Badania globalnych profili metylacji w tkankach dorosłej myszy MRL/MpJ i w sercach noworodków myszy C57BL/6J.

Abstrakt

W pracy tej otrzymano genomowe profile metylacji DNA dla dwóch modeli regeneracji u ssaków: (i) dorosłej myszy MRL/MpJ, która jest zdolna do zamykania otworów w małżowinie usznej oraz wykazuje podwyższone zdolności regeneracyjne w wielu innych narządach oraz (ii) sercach noworodków myszy, u których zachodzi regeneracja rozległych uszkodzeń lewej komory serca. Zidentyfikowano szereg odmiennie metylowanych regionów DNA, regionów DMR, pomiędzy myszą MRL/MpJ oraz szczepami kontrolnymi C57BL/6J i BALB/c w różnych tkankach: szpiku kostnym, śledzionie, wątrobie, sercu i małżowinie usznej pochodzących od niezranionych zwierząt. W małżowinie usznej, geny znalezione w sąsiedztwie regionów DMR były związane z procesami wpływającymi na regenerację, takimi jak tworzenie przednio-tylnego wzorca ekspresji genów, stan zapalny i apoptoza. Regiony promotorowe tych genów posiadały miejsca wiązana dla czynnika transkrypcyjnego Smad1, należącego do szlaku sygnałowego Tgfβ/Bmp. Ponadto wiele z tych genów było położone w sąsiedztwie loci cechy ilościowej zdolności do zamykania otworów w uszach. W modelu serca noworodków myszy zidentyfikowano regiony DMR wyróżniające profile metylacji DNA w dniu 1, kiedy obserwowana jest zdolność do regeneracji, i późniejszymi stadiami: dniem 7, 2 oraz 8 tygodniem, kiedy zdolność ta zanika. Geny związane z regionami DMR odpowiedzialne były za rozwój serca oraz tworzenie przednio-tylnego wzorca ekspresji genów. W porównaniu z dniem 1, w dniu siódmym zaobserwowano przeważającą liczbę regionów DMR, w których nastąpił wzrost poziomu metylacji DNA. Analiza bioinformatyczna wyłoniła potencjalne czynniki transkrypcyjnej regulacji, którymi są, zaangażowane w morfogenezę serca Mef2c, Nr2f2, Tead4 oraz Mfsd6l, o funkcji bliżej nieznanej, mające miejsca wiązania w pobliżu odpowiednio około 25% i 50% z 929 regionów DMR.

Cytuj jako

Pełna treść

pobierz publikację
pobrano 309 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (Author(s))

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Doktoraty, rozprawy habilitacyjne, nostryfikacje
Typ:
praca doktorska pracowników zatrudnionych w PG oraz studentów studium doktoranckiego
Język:
polski
Rok wydania:
2016
Bibliografia: test
  1. Rysunek 11 Relacja pomiędzy DMR, a genami których poziom ekspresji zmienia się półtorakrotnie w sercu myszy pomiędzy dniem pierwszym i drugim tygodniem życia. otwiera się w nowej karcie
  2. Wykres rozrzutu prezentujący zmiany obserwowane pomiędzy DMR a poziomem ekspresji genu. otwiera się w nowej karcie
  3. Przykładowe geny, których zmiana w poziomie ekspresji została powiązana ze zmianą metylacji DNA. otwiera się w nowej karcie
  4. Wiek zwierząt oznaczono jako d1 (dzień pierwszy), d7 (dzień siódmy), w2 (drugi tydzień), w8 (ósmy tydzień). otwiera się w nowej karcie
  5. Zmiana metylacji DNA dKS odpowiada, zmiana ekspresji log2(r) odpowiada wartości logarytmu przy podstawie 2 ze stosunku znormalizowanych sygnałów ekspresji wyznaczonych przy użyciu mikromacierzy. otwiera się w nowej karcie
  6. Abdullah, I., J. J. Lepore, J. A. Epstein, M. S. Parmacek & P. J. Gruber (2005) MRL mice fail to heal the heart in response to ischemia-reperfusion injury. Wound Repair Regen, 13, 205-8. otwiera się w nowej karcie
  7. Adriaens, M. E., M. Jaillard, L. M. Eijssen, C. D. Mayer & C. T. Evelo (2012) An evaluation of two- channel ChIP-on-chip and DNA methylation microarray normalization strategies. BMC Genomics, 13, 42. otwiera się w nowej karcie
  8. Alfaro, M. P., M. Pagni, A. Vincent, J. Atkinson, M. F. Hill, J. Cates, J. M. Davidson, J. Rottman, E. Lee & P. P. Young (2008) The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair. Proc Natl Acad Sci U S A, 105, 18366-71. otwiera się w nowej karcie
  9. Almodovar-Garcia, K., M. Kwon, S. E. Samaras & J. M. Davidson (2014) ANKRD1 acts as a transcriptional repressor of MMP13 via the AP-1 site. Mol Cell Biol, 34, 1500-11. otwiera się w nowej karcie
  10. Arany, P. R., K. C. Flanders, T. Kobayashi, C. K. Kuo, C. Stuelten, K. V. Desai, R. Tuan, S. I. Rennard & A. B. Roberts (2006) Smad3 deficiency alters key structural elements of the extracellular matrix and mechanotransduction of wound closure. Proc Natl Acad Sci U S A, 103, 9250-5. otwiera się w nowej karcie
  11. Arasa, J., P. Martos, M. C. Terencio, F. Valcuende-Cavero & M. C. Montesinos (2014) Topical application of the adenosine A2A receptor agonist CGS-21680 prevents phorbol- induced epidermal hyperplasia and inflammation in mice. Exp Dermatol, 23, 555-60. otwiera się w nowej karcie
  12. Arthur, L. M., R. M. Demarest, L. Clark, D. Gourevitch, K. Bedelbaeva, R. Anderson, A. Snyder, A. J. Capobianco, P. Lieberman, L. Feigenbaum & E. Heber-Katz (2010) Epimorphic regeneration in mice is p53-independent. Cell Cycle, 9, 3667-73. otwiera się w nowej karcie
  13. Atit, R., S. K. Sgaier, O. A. Mohamed, M. M. Taketo, D. Dufort, A. L. Joyner, L. Niswander & R. A. Conlon (2006) Beta-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev Biol, 296, 164-76. otwiera się w nowej karcie
  14. Aurora, A. B., E. R. Porrello, W. Tan, A. I. Mahmoud, J. A. Hill, R. Bassel-Duby, H. A. Sadek & E. N. Olson (2014) Macrophages are required for neonatal heart regeneration. J Clin Invest, 124, 1382-92. otwiera się w nowej karcie
  15. Barrero, M. J. & J. C. Izpisua Belmonte (2011) Regenerating the epigenome. EMBO Rep, 12, 208-15. otwiera się w nowej karcie
  16. Beare, A. H., A. D. Metcalfe & M. W. Ferguson (2006) Location of injury influences the mechanisms of both regeneration and repair within the MRL/MpJ mouse. J Anat, 209, 547-59. otwiera się w nowej karcie
  17. Bedelbaeva, K., D. Gourevitch, L. Clark, P. Chen, J. M. Leferovich & E. Heber-Katz (2004) The MRL mouse heart healing response shows donor dominance in allogeneic fetal liver chimeric mice. Cloning Stem Cells, 6, 352-63. otwiera się w nowej karcie
  18. Bedelbaeva, K., A. Snyder, D. Gourevitch, L. Clark, X. M. Zhang, J. Leferovich, J. M. Cheverud, P. Lieberman & E. Heber-Katz (2010) Lack of p21 expression links cell cycle control and appendage regeneration in mice. Proc Natl Acad Sci U S A, 107, 5845-50. otwiera się w nowej karcie
  19. Bergmann, A. & H. Steller (2010) Apoptosis, stem cells, and tissue regeneration. Sci Signal, 3, re8. otwiera się w nowej karcie
  20. Bindea, G., B. Mlecnik, H. Hackl, P. Charoentong, M. Tosolini, A. Kirilovsky, W. H. Fridman, F. Pages, Z. Trajanoski & J. Galon (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 25, 1091-3. otwiera się w nowej karcie
  21. Blankenhorn, E. P., G. Bryan, A. V. Kossenkov, L. D. Clark, X. M. Zhang, C. Chang, W. Horng, L. S. Pletscher, J. M. Cheverud, L. C. Showe & E. Heber-Katz (2009) Genetic loci that regulate healing and regeneration in LG/J and SM/J mice. Mamm Genome, 20, 720-33. otwiera się w nowej karcie
  22. Blankenhorn, E. P., S. Troutman, L. D. Clark, X. M. Zhang, P. Chen & E. Heber-Katz (2003) Sexually dimorphic genes regulate healing and regeneration in MRL mice. Mamm Genome, 14, 250-60. otwiera się w nowej karcie
  23. Borgens, R. B. (1982) Mice regrow the tips of their foretoes. Science, 217, 747-50. otwiera się w nowej karcie
  24. Buckley, G., A. D. Metcalfe & M. W. Ferguson (2011) Peripheral nerve regeneration in the MRL/MpJ ear wound model. J Anat, 218, 163-72. otwiera się w nowej karcie
  25. Buckley, G., J. Wong, A. D. Metcalfe & M. W. Ferguson (2012) Denervation affects regenerative responses in MRL/MpJ and repair in C57BL/6 ear wounds. J Anat, 220, 3-12. otwiera się w nowej karcie
  26. Canhamero, T., L. V. Garcia & M. De Franco (2014) Acute Inflammation Loci Are Involved in Wound Healing in the Mouse Ear Punch Model. Adv Wound Care (New Rochelle), 3, 582-591. otwiera się w nowej karcie
  27. Chadwick, R. B., L. Bu, H. Yu, Y. Hu, J. E. Wergedal, S. Mohan & D. J. Baylink (2007) Digit tip regrowth and differential gene expression in MRL/Mpj, DBA/2, and C57BL/6 mice. Wound Repair Regen, 15, 275-84. otwiera się w nowej karcie
  28. Chalamalasetty, R. B., R. J. Garriock, W. C. Dunty, Jr., M. W. Kennedy, P. Jailwala, H. Si & T. P. Yamaguchi (2014) Mesogenin 1 is a master regulator of paraxial presomitic mesoderm differentiation. Development, 141, 4285-97. otwiera się w nowej karcie
  29. Chen, H., S. Shi, L. Acosta, W. Li, J. Lu, S. Bao, Z. Chen, Z. Yang, M. D. Schneider, K. R. Chien, S. J. Conway, M. C. Yoder, L. S. Haneline, D. Franco & W. Shou (2004) BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development, 131, 2219-31. otwiera się w nowej karcie
  30. Chen, H., W. Yong, S. Ren, W. Shen, Y. He, K. A. Cox, W. Zhu, W. Li, M. Soonpaa, R. M. Payne, D. Franco, L. J. Field, V. Rosen, Y. Wang & W. Shou (2006) Overexpression of bone morphogenetic protein 10 in myocardium disrupts cardiac postnatal hypertrophic growth. J Biol Chem, 281, 27481-91. otwiera się w nowej karcie
  31. Cheng, X. H., H., Zhang, X.;. 2011. Mechanisms of DNA Methylation, Methyl-CpG recognition, and Demethylation in Mammals. San Diego: Academic Press. otwiera się w nowej karcie
  32. Cheverud, J. M., H. A. Lawson, R. Funk, J. Zhou, E. P. Blankenhorn & E. Heber-Katz (2012) Healing quantitative trait loci in a combined cross analysis using related mouse strain crosses. Heredity (Edinb), 108, 441-6. otwiera się w nowej karcie
  33. Cimini, M., S. Fazel, H. Fujii, S. Zhou, G. Tang, R. D. Weisel & R. K. Li (2008) The MRL mouse heart does not recover ventricular function after a myocardial infarction. Cardiovasc Pathol, 17, 32-9. otwiera się w nowej karcie
  34. Clark, L. D., R. K. Clark & E. Heber-Katz (1998) A new murine model for mammalian wound repair and regeneration. Clin Immunol Immunopathol, 88, 35-45. otwiera się w nowej karcie
  35. Colwell, A. S., T. M. Krummel, W. Kong, M. T. Longaker & H. P. Lorenz (2006) Skin wounds in the MRL/MPJ mouse heal with scar. Wound Repair Regen, 14, 81-90. otwiera się w nowej karcie
  36. D'Uva, G., A. Aharonov, M. Lauriola, D. Kain, Y. Yahalom-Ronen, S. Carvalho, K. Weisinger, E. Bassat, D. Rajchman, O. Yifa, M. Lysenko, T. Konfino, J. Hegesh, O. Brenner, M. Neeman, Y. Yarden, J. Leor, R. Sarig, R. P. Harvey & E. Tzahor (2015) ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol, 17, 627-38. otwiera się w nowej karcie
  37. Davis, T. A., M. Amare, S. Naik, A. L. Kovalchuk & D. Tadaki (2007) Differential cutaneous wound healing in thermally injured MRL/MPJ mice. Wound Repair Regen, 15, 577-88. otwiera się w nowej karcie
  38. Davis, T. A., J. D. Longcor, K. C. Hicok & G. G. Lennon (2005) Prior injury accelerates subsequent wound closure in a mouse model of regeneration. Cell Tissue Res, 320, 417-26. otwiera się w nowej karcie
  39. Dioufa, N., A. V. Schally, I. Chatzistamou, E. Moustou, N. L. Block, G. K. Owens, A. G. Papavassiliou & H. Kiaris (2010) Acceleration of wound healing by growth hormone- releasing hormone and its agonists. Proc Natl Acad Sci U S A, 107, 18611-5. otwiera się w nowej karcie
  40. Drenckhahn, J. D., Q. P. Schwarz, S. Gray, A. Laskowski, H. Kiriazis, Z. Ming, R. P. Harvey, X. J. Du, D. R. Thorburn & T. C. Cox (2008) Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development. Dev Cell, 15, 521-33. otwiera się w nowej karcie
  41. Fazzari, M. J. & J. M. Greally (2010) Introduction to epigenomics and epigenome-wide analysis. Methods Mol Biol, 620, 243-65. otwiera się w nowej karcie
  42. Felician, G., C. Collesi, M. Lusic, V. Martinelli, M. D. Ferro, L. Zentilin, S. Zacchigna & M. Giacca (2014) Epigenetic modification at Notch responsive promoters blunts efficacy of inducing notch pathway reactivation after myocardial infarction. Circ Res, 115, 636-49. otwiera się w nowej karcie
  43. Fitzgerald, J., C. Rich, D. Burkhardt, J. Allen, A. S. Herzka & C. B. Little (2008) Evidence for articular cartilage regeneration in MRL/MpJ mice. Osteoarthritis Cartilage, 16, 1319-26. otwiera się w nowej karcie
  44. Fry, E. J., H. B. Stolp, M. A. Lane, K. M. Dziegielewska & N. R. Saunders (2003) Regeneration of supraspinal axons after complete transection of the thoracic spinal cord in neonatal opossums (Monodelphis domestica). J Comp Neurol, 466, 422-44. otwiera się w nowej karcie
  45. Gawronska-Kozak, B. (2004) Regeneration in the ears of immunodeficient mice: identification and lineage analysis of mesenchymal stem cells. Tissue Eng, 10, 1251-65. otwiera się w nowej karcie
  46. Gilsbach, R., S. Preissl, B. A. Gruning, T. Schnick, L. Burger, V. Benes, A. Wurch, U. Bonisch, S. Gunther, R. Backofen, B. K. Fleischmann, D. Schubeler & L. Hein (2014) Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun, 5, 5288. otwiera się w nowej karcie
  47. Giordano Attianese, G. M. & B. Desvergne (2015) Integrative and systemic approaches for evaluating PPARbeta/delta (PPARD) function. Nucl Recept Signal, 13, e001. Gornikiewicz, B., A. Ronowicz, J. Podolak, P. Madanecki, A. Stanislawska-Sachadyn & P. Sachadyn (2013) Epigenetic basis of regeneration: analysis of genomic DNA methylation profiles in the MRL/MpJ mouse. DNA Res, 20, 605-21.
  48. Goss, R. J. & L. N. Grimes (1975) Epidermal downgrowths in regenerating rabbit ear holes. J Morphol, 146, 533-42. otwiera się w nowej karcie
  49. Gourevitch, D., L. Clark, P. Chen, A. Seitz, S. J. Samulewicz & E. Heber-Katz (2003) Matrix metalloproteinase activity correlates with blastema formation in the regenerating MRL mouse ear hole model. Dev Dyn, 226, 377-87. otwiera się w nowej karcie
  50. Gourevitch, D., A. V. Kossenkov, Y. Zhang, L. Clark, C. Chang, L. C. Showe & E. Heber-Katz (2014) Inflammation and Its Correlates in Regenerative Wound Healing: An Alternate Perspective. Adv Wound Care (New Rochelle), 3, 592-603. otwiera się w nowej karcie
  51. Gourevitch, D. L., L. Clark, K. Bedelbaeva, J. Leferovich & E. Heber-Katz (2009) Dynamic changes after murine digit amputation: the MRL mouse digit shows waves of tissue remodeling, growth, and apoptosis. Wound Repair Regen, 17, 447-55. otwiera się w nowej karcie
  52. Grisel, P., A. Meinhardt, H. A. Lehr, L. Kappenberger, Y. Barrandon & G. Vassalli (2008) The MRL mouse repairs both cryogenic and ischemic myocardial infarcts with scar. Cardiovasc Pathol, 17, 14-22. otwiera się w nowej karcie
  53. Hampton, D. W., A. Seitz, P. Chen, E. Heber-Katz & J. W. Fawcett (2004) Altered CNS response to injury in the MRL/MpJ mouse. Neuroscience, 127, 821-32. otwiera się w nowej karcie
  54. Hasegawa, T., T. Nakajima, T. Ishida, A. Kudo & A. Kawakami (2015) A diffusible signal derived from hematopoietic cells supports the survival and proliferation of regenerative cells during zebrafish fin fold regeneration. Dev Biol, 399, 80-90. otwiera się w nowej karcie
  55. Hattori, N., Y. Imao, K. Nishino, N. Hattori, J. Ohgane, S. Yagi, S. Tanaka & K. Shiota (2007) Epigenetic regulation of Nanog gene in embryonic stem and trophoblast stem cells. Genes Cells, 12, 387-96. otwiera się w nowej karcie
  56. Hattori, N., K. Nishino, Y. G. Ko, N. Hattori, J. Ohgane, S. Tanaka & K. Shiota (2004) Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J Biol Chem, 279, 17063-9. otwiera się w nowej karcie
  57. Heber-Katz, E. (1999) The regenerating mouse ear. Semin Cell Dev Biol, 10, 415-9. otwiera się w nowej karcie
  58. Heber-Katz, E., P. Chen, L. Clark, X. M. Zhang, S. Troutman & E. P. Blankenhorn (2004a) Regeneration in MRL mice: further genetic loci controlling the ear hole closure trait using MRL and M.m. Castaneus mice. Wound Repair Regen, 12, 384-92. otwiera się w nowej karcie
  59. Heber-Katz, E., J. Leferovich, K. Bedelbaeva, D. Gourevitch & L. Clark (2004b) The scarless heart and the MRL mouse. Philos Trans R Soc Lond B Biol Sci, 359, 785-93. otwiera się w nowej karcie
  60. Helmo, F. R., J. R. Machado, C. S. Guimaraes, P. Teixeira Vde, M. A. dos Reis & R. R. Correa (2013) Fetal wound healing biomarkers. Dis Markers, 35, 939-44. otwiera się w nowej karcie
  61. Hirose, K., N. Shimoda & Y. Kikuchi (2013) Transient reduction of 5-methylcytosine and 5- hydroxymethylcytosine is associated with active DNA demethylation during regeneration of zebrafish fin. Epigenetics, 8, 899-906. otwiera się w nowej karcie
  62. Hu, X., H. Ran, W. Dechang, W. Yibing, F. Yongqiang & L. Qiang (2013) Absence of the adenosine A(2A) receptor attenuates hypertrophic scarring in mice. J Burn Care Res, 34, e161-7. otwiera się w nowej karcie
  63. Ieda, M., J. D. Fu, P. Delgado-Olguin, V. Vedantham, Y. Hayashi, B. G. Bruneau & D. Srivastava (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142, 375-86. otwiera się w nowej karcie
  64. Iskandar, B. J., E. Rizk, B. Meier, N. Hariharan, T. Bottiglieri, R. H. Finnell, D. F. Jarrard, R. V. Banerjee, J. H. Skene, A. Nelson, N. Patel, C. Gherasim, K. Simon, T. D. Cook & K. J. Hogan (2010) Folate regulation of axonal regeneration in the rodent central nervous system through DNA methylation. J Clin Invest, 120, 1603-16. otwiera się w nowej karcie
  65. Jain, R., D. Li, M. Gupta, L. J. Manderfield, J. L. Ifkovits, Q. Wang, F. Liu, Y. Liu, A. Poleshko, A. Padmanabhan, J. C. Raum, L. Li, E. E. Morrisey, M. M. Lu, K. J. Won & J. A. Epstein (2015) HEART DEVELOPMENT. Integration of Bmp and Wnt signaling by Hopx specifies commitment of cardiomyoblasts. Science, 348, aaa6071. otwiera się w nowej karcie
  66. Janky, R., A. Verfaillie, H. Imrichova, B. Van de Sande, L. Standaert, V. Christiaens, G. Hulselmans, K. Herten, M. Naval Sanchez, D. Potier, D. Svetlichnyy, Z. Kalender Atak, M. Fiers, J. C. Marine & S. Aerts (2014) iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput Biol, 10, e1003731. otwiera się w nowej karcie
  67. Jesty, S. A., M. A. Steffey, F. K. Lee, M. Breitbach, M. Hesse, S. Reining, J. C. Lee, R. M. Doran, A. Y. Nikitin, B. K. Fleischmann & M. I. Kotlikoff (2012) c-kit+ precursors support postinfarction myogenesis in the neonatal, but not adult, heart. Proc Natl Acad Sci U S A, 109, 13380-5. otwiera się w nowej karcie
  68. Jin, Y., J. Wu, X. Song, Q. Song, B. L. Cully, A. Messmer-Blust, M. Xu, S. Y. Foo, A. Rosenzweig & J. Li (2011) RTEF-1, an upstream gene of hypoxia-inducible factor-1alpha, accelerates recovery from ischemia. J Biol Chem, 286, 22699-705. otwiera się w nowej karcie
  69. Jones, P. A. (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet, 13, 484-92. otwiera się w nowej karcie
  70. Katsuyama, T. & R. Paro (2011) Epigenetic reprogramming during tissue regeneration. FEBS Lett, 585, 1617-24. otwiera się w nowej karcie
  71. Kattman, S. J., A. D. Witty, M. Gagliardi, N. C. Dubois, M. Niapour, A. Hotta, J. Ellis & G. Keller (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell, 8, 228- 40. otwiera się w nowej karcie
  72. Kench, J. A., D. M. Russell, V. A. Fadok, S. K. Young, G. S. Worthen, J. Jones-Carson, J. E. Henson, P. M. Henson & D. Nemazee (1999) Aberrant wound healing and TGF-beta production in the autoimmune-prone MRL/+ mouse. Clin Immunol, 92, 300-10. otwiera się w nowej karcie
  73. Kiaris, H., N. L. Block, A. G. Papavassiliou & A. V. Schally (2011) GHRH and wound healing. Commun Integr Biol, 4, 82-3. otwiera się w nowej karcie
  74. Koh, K. P. & A. Rao (2013) DNA methylation and methylcytosine oxidation in cell fate decisions. Curr Opin Cell Biol, 25, 152-61. otwiera się w nowej karcie
  75. Kohli, R. M. & Y. Zhang (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature, 502, 472-9. otwiera się w nowej karcie
  76. Kostyk, S. K., P. G. Popovich, B. T. Stokes, P. Wei & L. B. Jakeman (2008) Robust axonal growth and a blunted macrophage response are associated with impaired functional recovery after spinal cord injury in the MRL/MpJ mouse. Neuroscience, 156, 498-514. otwiera się w nowej karcie
  77. Kwon, Y. J., K. G. Lee & D. Choi (2015) Clinical implications of advances in liver regeneration. Clin Mol Hepatol, 21, 7-13. otwiera się w nowej karcie
  78. Laird, P. W. (2010) Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet, 11, 191-203. otwiera się w nowej karcie
  79. Lalley, A. L., N. A. Dyment, N. Kazemi, K. Kenter, C. Gooch, D. W. Rowe, D. L. Butler & J. T. Shearn (2015) Improved biomechanical and biological outcomes in the MRL/MpJ murine strain following a full-length patellar tendon injury. J Orthop Res. otwiera się w nowej karcie
  80. Leferovich, J. M., K. Bedelbaeva, S. Samulewicz, X. M. Zhang, D. Zwas, E. B. Lankford & E. Heber-Katz (2001) Heart regeneration in adult MRL mice. Proc Natl Acad Sci U S A, 98, 9830-5. otwiera się w nowej karcie
  81. Lewis, C. J., A. N. Mardaryev, K. Poterlowicz, T. Y. Sharova, A. Aziz, D. T. Sharpe, N. V. Botchkareva & A. A. Sharov (2014) Bone morphogenetic protein signaling suppresses wound-induced skin repair by inhibiting keratinocyte proliferation and migration. J Invest Dermatol, 134, 827-37. otwiera się w nowej karcie
  82. Li, F., Q. Huang, J. Chen, Y. Peng, D. R. Roop, J. S. Bedford & C. Y. Li (2010) Apoptotic cells activate the "phoenix rising" pathway to promote wound healing and tissue regeneration. Sci Signal, 3, ra13. otwiera się w nowej karcie
  83. Li, J., E. Gao, A. Vite, R. Yi, L. Gomez, S. Goossens, F. van Roy & G. L. Radice (2015) Alpha- catenins control cardiomyocyte proliferation by regulating Yap activity. Circ Res, 116, 70-9. otwiera się w nowej karcie
  84. Li, J., P. Li, Y. Zhang, G. B. Li, F. T. He, Y. G. Zhou, K. Yang & S. S. Dai (2012) Upregulation of ski in fibroblast is implicated in the peroxisome proliferator--activated receptor delta- mediated wound healing. Cell Physiol Biochem, 30, 1059-71. otwiera się w nowej karcie
  85. Li, P., P. Liu, R. P. Xiong, X. Y. Chen, Y. Zhao, W. P. Lu, X. Liu, Y. L. Ning, N. Yang & Y. G. Zhou (2011) Ski, a modulator of wound healing and scar formation in the rat skin and rabbit ear. J Pathol, 223, 659-71. otwiera się w nowej karcie
  86. Li, X., W. Gu, G. Masinde, M. Hamilton-Ulland, S. Xu, S. Mohan & D. J. Baylink (2001) Genetic control of the rate of wound healing in mice. Heredity (Edinb), 86, 668-74. otwiera się w nowej karcie
  87. Li, X., S. Mohan, W. Gu, N. Miyakoshi & D. J. Baylink (2000) Differential protein profile in the ear-punched tissue of regeneration and non-regeneration strains of mice: a novel approach to explore the candidate genes for soft-tissue regeneration. Biochim Biophys Acta, 1524, 102-9. otwiera się w nowej karcie
  88. Liang, P., F. Song, S. Ghosh, E. Morien, M. Qin, S. Mahmood, K. Fujiwara, J. Igarashi, H. Nagase & W. A. Held (2011) Genome-wide survey reveals dynamic widespread tissue-specific changes in DNA methylation during development. BMC Genomics, 12, 231. otwiera się w nowej karcie
  89. Liu, J., K. Johnson, J. Li, V. Piamonte, B. M. Steffy, M. H. Hsieh, N. Ng, J. Zhang, J. R. Walker, S. Ding, K. Muneoka, X. Wu, R. Glynne & P. G. Schultz (2011) Regenerative phenotype in mice with a point mutation in transforming growth factor beta type I receptor (TGFBR1). Proc Natl Acad Sci U S A, 108, 14560-5. otwiera się w nowej karcie
  90. Liu, X., P. Li, X. Y. Chen & Y. G. Zhou (2010) c-Ski promotes skin fibroblast proliferation but decreases type I collagen: implications for wound healing and scar formation. Clin Exp Dermatol, 35, 417-24. otwiera się w nowej karcie
  91. Liu, X., E. Zhang, P. Li, J. Liu, P. Zhou, D. Y. Gu, X. Chen, T. Cheng & Y. Zhou (2006) Expression and possible mechanism of c-ski, a novel tissue repair-related gene during normal and radiation-impaired wound healing. Wound Repair Regen, 14, 162-71. otwiera się w nowej karcie
  92. Macedo, L., G. Pinhal-Enfield, V. Alshits, G. Elson, B. N. Cronstein & S. J. Leibovich (2007) Wound healing is impaired in MyD88-deficient mice: a role for MyD88 in the regulation of wound healing by adenosine A2A receptors. Am J Pathol, 171, 1774-88. otwiera się w nowej karcie
  93. Mahmoud, A. I., F. Kocabas, S. A. Muralidhar, W. Kimura, A. S. Koura, S. Thet, E. R. Porrello & H. A. Sadek (2013) Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature, 497, 249-53. otwiera się w nowej karcie
  94. Martin, P., D. D'Souza, J. Martin, R. Grose, L. Cooper, R. Maki & S. R. McKercher (2003) Wound healing in the PU.1 null mouse--tissue repair is not dependent on inflammatory cells. Curr Biol, 13, 1122-8. otwiera się w nowej karcie
  95. Martin, P. & S. J. Leibovich (2005) Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol, 15, 599-607. otwiera się w nowej karcie
  96. Masinde, G. L., R. Li, B. Nguyen, H. Yu, A. K. Srivastava, B. Edderkaoui, J. E. Wergedal, D. J. Baylink & S. Mohan (2006) New quantitative trait loci that regulate wound healing in an intercross progeny from DBA/1J and 129 x 1/SvJ inbred strains of mice. Funct Integr Genomics, 6, 157-63. otwiera się w nowej karcie
  97. Masinde, G. L., X. Li, W. Gu, H. Davidson, S. Mohan & D. J. Baylink (2001) Identification of wound healing/regeneration quantitative trait loci (QTL) at multiple time points that explain seventy percent of variance in (MRL/MpJ and SJL/J) mice F2 population. otwiera się w nowej karcie
  98. Genome Res, 11, 2027-33. otwiera się w nowej karcie
  99. McBrearty, B. A., L. D. Clark, X. M. Zhang, E. P. Blankenhorn & E. Heber-Katz (1998) Genetic analysis of a mammalian wound-healing trait. Proc Natl Acad Sci U S A, 95, 11792-7. otwiera się w nowej karcie
  100. Metcalfe, A. D., H. Willis, A. Beare & M. W. Ferguson (2006) Characterizing regeneration in the vertebrate ear. J Anat, 209, 439-46. otwiera się w nowej karcie
  101. Moseley, F. L., M. E. Faircloth, W. Lockwood, M. S. Marber, K. A. Bicknell, P. Valasek & G. Brooks (2011) Limitations of the MRL mouse as a model for cardiac regeneration. J Pharm Pharmacol, 63, 648-56. otwiera się w nowej karcie
  102. Munoz-Felix, J. M., M. Gonzalez-Nunez & J. M. Lopez-Novoa (2013) ALK1-Smad1/5 signaling pathway in fibrosis development: friend or foe? Cytokine Growth Factor Rev, 24, 523- 37. otwiera się w nowej karcie
  103. Naito, A. T., I. Shiojima, H. Akazawa, K. Hidaka, T. Morisaki, A. Kikuchi & I. Komuro (2006) Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proc Natl Acad Sci U S A, 103, 19812-7. otwiera się w nowej karcie
  104. Nakamura, E., Y. Makita, T. Okamoto, K. Nagaya, T. Hayashi, M. Sugimoto, H. Manabe, G. Taketazu, H. Kajino & K. Fujieda (2011) 5.78 Mb terminal deletion of chromosome 15q in a girl, evaluation of NR2F2 as candidate gene for congenital heart defects. Eur J Med Genet, 54, 354-6. otwiera się w nowej karcie
  105. Naseem, R. H., A. P. Meeson, J. Michael Dimaio, M. D. White, J. Kallhoff, C. Humphries, S. C. Goetsch, L. J. De Windt, M. A. Williams, M. G. Garry & D. J. Garry (2007) Reparative myocardial mechanisms in adult C57BL/6 and MRL mice following injury. Physiol Genomics, 30, 44-52.
  106. Naviaux, R. K., T. P. Le, K. Bedelbaeva, J. Leferovich, D. Gourevitch, P. Sachadyn, X. M. Zhang, L. Clark & E. Heber-Katz (2009) Retained features of embryonic metabolism in the adult MRL mouse. Mol Genet Metab, 96, 133-44. otwiera się w nowej karcie
  107. Nieto-Diaz, M., D. W. Pita-Thomas, T. Munoz-Galdeano, C. Martinez-Maza, R. Navarro-Ruiz, D. Reigada, M. Yunta, M. J. Caballero-Lopez, M. Nieto-Sampedro & R. Martinez-Maza (2012) Deer antler innervation and regeneration. Front Biosci, 17, 1389-401.
  108. Nostro, M. C., X. Cheng, G. M. Keller & P. Gadue (2008) Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood. Cell Stem Cell, 2, 60-71. otwiera się w nowej karcie
  109. O'Meara, C. C., J. A. Wamstad, R. A. Gladstone, G. M. Fomovsky, V. L. Butty, A. Shrikumar, J. B. Gannon, L. A. Boyer & R. T. Lee (2015) Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration. Circ Res, 116, 804-15. otwiera się w nowej karcie
  110. Oh, Y. S., L. E. Thomson, M. C. Fishbein, D. S. Berman, B. Sharifi & P. S. Chen (2004) Scar formation after ischemic myocardial injury in MRL mice. Cardiovasc Pathol, 13, 203-6. otwiera się w nowej karcie
  111. Patel, A. N., F. Silva & A. A. Winters (2015) Stem cell therapy for heart failure. Heart Fail Clin, 11, 275-86. otwiera się w nowej karcie
  112. Perez-Aso, M., L. Chiriboga & B. N. Cronstein (2012) Pharmacological blockade of adenosine A2A receptors diminishes scarring. Faseb j, 26, 4254-63. otwiera się w nowej karcie
  113. Planello, A. C., J. Ji, V. Sharma, R. Singhania, F. Mbabaali, F. Muller, J. A. Alfaro, C. Bock, D. D. De Carvalho & N. N. Batada (2014) Aberrant DNA methylation reprogramming during induced pluripotent stem cell generation is dependent on the choice of reprogramming factors. Cell Regen (Lond), 3, 4. otwiera się w nowej karcie
  114. Polizzotti, B. D., B. Ganapathy, S. Walsh, S. Choudhury, N. Ammanamanchi, D. G. Bennett, C. G. dos Remedios, B. J. Haubner, J. M. Penninger & B. Kuhn (2015) Neuregulin stimulation of cardiomyocyte regeneration in mice and human myocardium reveals a therapeutic window. Sci Transl Med, 7, 281ra45. otwiera się w nowej karcie
  115. Porrello, E. R., B. A. Johnson, A. B. Aurora, E. Simpson, Y. J. Nam, S. J. Matkovich, G. W. Dorn, 2nd, E. van Rooij & E. N. Olson (2011a) MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res, 109, 670-9. otwiera się w nowej karcie
  116. Porrello, E. R., A. I. Mahmoud, E. Simpson, J. A. Hill, J. A. Richardson, E. N. Olson & H. A. Sadek (2011b) Transient regenerative potential of the neonatal mouse heart. Science, 331, 1078-80. otwiera się w nowej karcie
  117. Porrello, E. R., A. I. Mahmoud, E. Simpson, B. A. Johnson, D. Grinsfelder, D. Canseco, P. P. Mammen, B. A. Rothermel, E. N. Olson & H. A. Sadek (2013) Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci U S A, 110, 187-92. otwiera się w nowej karcie
  118. Porrello, E. R. & E. N. Olson (2014) A neonatal blueprint for cardiac regeneration. Stem Cell Res. otwiera się w nowej karcie
  119. Powell, C., A. R. Grant, E. Cornblath & D. Goldman (2013) Analysis of DNA methylation reveals a partial reprogramming of the Muller glia genome during retina regeneration. Proc Natl Acad Sci U S A, 110, 19814-9. otwiera się w nowej karcie
  120. Puente, B. N., W. Kimura, S. A. Muralidhar, J. Moon, J. F. Amatruda, K. L. Phelps, D. Grinsfelder, B. A. Rothermel, R. Chen, J. A. Garcia, C. X. Santos, S. Thet, E. Mori, M. T. Kinter, P. M. Rindler, S. Zacchigna, S. Mukherjee, D. J. Chen, A. I. Mahmoud, M. Giacca, P. S. Rabinovitch, A. Aroumougame, A. M. Shah, L. I. Szweda & H. A. Sadek (2014) The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell, 157, 565-79. otwiera się w nowej karcie
  121. Rajnoch, C., S. Ferguson, A. D. Metcalfe, S. E. Herrick, H. S. Willis & M. W. Ferguson (2003) Regeneration of the ear after wounding in different mouse strains is dependent on the severity of wound trauma. Dev Dyn, 226, 388-97. otwiera się w nowej karcie
  122. Rinkevich, Y., G. G. Walmsley, M. S. Hu, Z. N. Maan, A. M. Newman, M. Drukker, M. Januszyk, G. W. Krampitz, G. C. Gurtner, H. P. Lorenz, I. L. Weissman & M. T. Longaker (2015) Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science, 348, aaa2151. otwiera się w nowej karcie
  123. Robey, T. E. & C. E. Murry (2008) Absence of regeneration in the MRL/MpJ mouse heart following infarction or cryoinjury. Cardiovasc Pathol, 17, 6-13. otwiera się w nowej karcie
  124. Sachadyn, P., X. M. Zhang, L. D. Clark, R. K. Naviaux & E. Heber-Katz (2008) Naturally occurring mitochondrial DNA heteroplasmy in the MRL mouse. Mitochondrion, 8, 358-66. otwiera się w nowej karcie
  125. Samaras, S. E., K. Almodovar-Garcia, N. Wu, F. Yu & J. M. Davidson (2015) Global deletion of Ankrd1 results in a wound-healing phenotype associated with dermal fibroblast dysfunction. Am J Pathol, 185, 96-109. otwiera się w nowej karcie
  126. Scacheri, P. C., G. E. Crawford & S. Davis (2006) Statistics for ChIP-chip and DNase hypersensitivity experiments on NimbleGen arrays. Methods Enzymol, 411, 270-82. otwiera się w nowej karcie
  127. Schubeler, D. (2015) Function and information content of DNA methylation. Nature, 517, 321- 6. otwiera się w nowej karcie
  128. Seifert, A. W., S. G. Kiama, M. G. Seifert, J. R. Goheen, T. M. Palmer & M. Maden (2012) Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature, 489, 561-5. otwiera się w nowej karcie
  129. Senyo, S. E., M. L. Steinhauser, C. L. Pizzimenti, V. K. Yang, L. Cai, M. Wang, T. D. Wu, J. L. Guerquin-Kern, C. P. Lechene & R. T. Lee (2013) Mammalian heart renewal by pre- existing cardiomyocytes. Nature, 493, 433-6. otwiera się w nowej karcie
  130. Shah, M., D. M. Foreman & M. W. Ferguson (1995) Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci, 108 ( Pt 3), 985-1002.
  131. Shannon, P., A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski & T. Ideker (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 13, 2498-504. otwiera się w nowej karcie
  132. Shaw, T. & P. Martin (2009) Epigenetic reprogramming during wound healing: loss of polycomb-mediated silencing may enable upregulation of repair genes. EMBO Rep, 10, 881-6. otwiera się w nowej karcie
  133. Sheedy, F. J. & L. A. O'Neill (2007) The Troll in Toll: Mal and Tram as bridges for TLR2 and TLR4 signaling. J Leukoc Biol, 82, 196-203. otwiera się w nowej karcie
  134. Sheng, W., Y. Qian, P. Zhang, Y. Wu, H. Wang, X. Ma, L. Chen, D. Ma & G. Huang (2014) Association of promoter methylation statuses of congenital heart defect candidate genes with Tetralogy of Fallot. J Transl Med, 12, 31. otwiera się w nowej karcie
  135. Shi, Y., B. Reitmaier, J. Regenbogen, R. M. Slowey, S. R. Opalenik, E. Wolf, A. Goppelt & J. M. Davidson (2005) CARP, a cardiac ankyrin repeat protein, is up-regulated during wound healing and induces angiogenesis in experimental granulation tissue. Am J Pathol, 166, 303-12. otwiera się w nowej karcie
  136. Shinagawa, T., T. Nomura, C. Colmenares, M. Ohira, A. Nakagawara & S. Ishii (2001) Increased susceptibility to tumorigenesis of ski-deficient heterozygous mice. Oncogene, 20, 8100- 8. otwiera się w nowej karcie
  137. Sim, C. B., M. Ziemann, A. Kaspi, K. N. Harikrishnan, J. Ooi, I. Khurana, L. Chang, J. E. Hudson, A. El-Osta & E. R. Porrello (2014) Dynamic changes in the cardiac methylome during postnatal development. Faseb j, 29, 1329-43. otwiera się w nowej karcie
  138. Sinagra, T., S. Merlo, S. F. Spampinato, R. D. Pasquale & M. A. Sortino (2015) High mobility group box 1 contributes to wound healing induced by inhibition of dipeptidylpeptidase 4 in cultured keratinocytes. Front Pharmacol, 6, 126. otwiera się w nowej karcie
  139. Smiley, D., M. A. Smith, V. Carreira, M. Jiang, S. E. Koch, M. Kelley, J. Rubinstein, W. K. Jones & M. Tranter (2014) Increased fibrosis and progression to heart failure in MRL mice following ischemia/reperfusion injury. Cardiovasc Pathol, 23, 327-34. otwiera się w nowej karcie
  140. Smith, Z. D. & A. Meissner (2013) DNA methylation: roles in mammalian development. Nat Rev Genet, 14, 204-20. otwiera się w nowej karcie
  141. Spruijt, C. G. & M. Vermeulen (2014) DNA methylation: old dog, new tricks? Nat Struct Mol Biol, 21, 949-54. otwiera się w nowej karcie
  142. Srour, M. K., J. L. Fogel, K. T. Yamaguchi, A. P. Montgomery, A. K. Izuhara, A. L. Misakian, S. Lam, D. L. Lakeland, M. M. Urata, J. S. Lee & F. V. Mariani (2015) Natural large-scale regeneration of rib cartilage in a mouse model. J Bone Miner Res, 30, 297-308. otwiera się w nowej karcie
  143. Stanghellini, I., G. Falco, S. L. Lee, M. Monti & M. S. Ko (2009) Trim43a, Trim43b, and Trim43c: Novel mouse genes expressed specifically in mouse preimplantation embryos. Gene Expr Patterns, 9, 595-602. otwiera się w nowej karcie
  144. Stewart, A. F., J. Suzow, T. Kubota, T. Ueyama & H. H. Chen (1998) Transcription factor RTEF-1 mediates alpha1-adrenergic reactivation of the fetal gene program in cardiac myocytes. Circ Res, 83, 43-9. otwiera się w nowej karcie
  145. Stewart, S., Z. Y. Tsun & J. C. Izpisua Belmonte (2009) A histone demethylase is necessary for regeneration in zebrafish. Proc Natl Acad Sci U S A, 106, 19889-94. otwiera się w nowej karcie
  146. Sturzu, A. C., K. Rajarajan, D. Passer, K. Plonowska, A. Riley, T. C. Tan, A. Sharma, A. F. Xu, M. C. Engels, R. Feistritzer, G. Li, M. K. Selig, R. Geissler, K. D. Robertson, M. Scherrer-Crosbie, I. J. Domian & S. M. Wu (2015) Fetal Mammalian Heart Generates a Robust Compensatory Response to Cell Loss. Circulation, 132, 109-21. otwiera się w nowej karcie
  147. Takayama, K., N. Shimoda, S. Takanaga, S. Hozumi & Y. Kikuchi (2014) Expression patterns of dnmt3aa, dnmt3ab, and dnmt4 during development and fin regeneration in zebrafish. otwiera się w nowej karcie
  148. Gene Expr Patterns, 14, 105-10. otwiera się w nowej karcie
  149. Tang, J., F. Fang, D. F. Miller, J. M. Pilrose, D. Matei, T. H. Huang & K. P. Nephew (2015) Global DNA methylation profiling technologies and the ovarian cancer methylome. Methods Mol Biol, 1238, 653-75. otwiera się w nowej karcie
  150. Tang, T., Y. Shi, S. R. Opalenik, D. M. Brantley-Sieders, J. Chen, J. M. Davidson & S. J. Brandt (2006) Expression of the TAL1/SCL transcription factor in physiological and pathological vascular processes. J Pathol, 210, 121-9. otwiera się w nowej karcie
  151. Teusner, J. T., C. Goddard, D. A. Belford, V. Dunaiski & B. C. Powell (2006) Identification of a novel FcgammaRIII receptor that is up-regulated in fetal wound healing. Wound Repair Regen, 14, 405-12. otwiera się w nowej karcie
  152. Thuret, S., M. Thallmair, L. L. Horky & F. H. Gage (2012) Enhanced functional recovery in MRL/MpJ mice after spinal cord dorsal hemisection. PLoS One, 7, e30904. otwiera się w nowej karcie
  153. Tolba, R. H., F. A. Schildberg, D. Decker, Z. Abdullah, R. Buttner, T. Minor & A. von Ruecker (2010) Mechanisms of improved wound healing in Murphy Roths Large (MRL) mice after skin transplantation. Wound Repair Regen, 18, 662-70. otwiera się w nowej karcie
  154. Toriseva, M., M. Laato, O. Carpen, S. T. Ruohonen, E. Savontaus, M. Inada, S. M. Krane & V. M. Kahari (2012) MMP-13 regulates growth of wound granulation tissue and modulates gene expression signatures involved in inflammation, proteolysis, and cell viability. PLoS One, 7, e42596. otwiera się w nowej karcie
  155. Tseng, A. S., D. S. Adams, D. Qiu, P. Koustubhan & M. Levin (2007) Apoptosis is required during early stages of tail regeneration in Xenopus laevis. Dev Biol, 301, 62-9. otwiera się w nowej karcie
  156. Tucker, B., H. Klassen, L. Yang, D. F. Chen & M. J. Young (2008) Elevated MMP Expression in the MRL Mouse Retina Creates a Permissive Environment for Retinal Regeneration. Invest Ophthalmol Vis Sci, 49, 1686-95. otwiera się w nowej karcie
  157. Turner, N. J., S. A. Johnson & S. F. Badylak (2010) A histomorphologic study of the normal healing response following digit amputation in C57bl/6 and MRL/MpJ mice. Arch Histol Cytol, 73, 103-11. otwiera się w nowej karcie
  158. Ueno, M., B. L. Lyons, L. M. Burzenski, B. Gott, D. J. Shaffer, D. C. Roopenian & L. D. Shultz (2005) Accelerated wound healing of alkali-burned corneas in MRL mice is associated with a reduced inflammatory signature. Invest Ophthalmol Vis Sci, 46, 4097-106. otwiera się w nowej karcie
  159. Umer, M. & Z. Herceg (2013) Deciphering the epigenetic code: an overview of DNA methylation analysis methods. Antioxid Redox Signal, 18, 1972-86. otwiera się w nowej karcie
  160. Valdespino, V. & P. M. Valdespino (2015) Potential of epigenetic therapies in the management of solid tumors. Cancer Manag Res, 7, 241-51.
  161. Vorotnikova, E., D. McIntosh, A. Dewilde, J. Zhang, J. E. Reing, L. Zhang, K. Cordero, K. Bedelbaeva, D. Gourevitch, E. Heber-Katz, S. F. Badylak & S. J. Braunhut (2010) Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vivo. Matrix Biol, 29, 690-700. otwiera się w nowej karcie
  162. Walsh, S., A. Ponten, B. K. Fleischmann & S. Jovinge (2010) Cardiomyocyte cell cycle control and growth estimation in vivo--an analysis based on cardiomyocyte nuclei. Cardiovasc Res, 86, 365-73. otwiera się w nowej karcie
  163. Ward, B. D., B. D. Furman, J. L. Huebner, V. B. Kraus, F. Guilak & S. A. Olson (2008) Absence of posttraumatic arthritis following intraarticular fracture in the MRL/MpJ mouse. Arthritis Rheum, 58, 744-53. otwiera się w nowej karcie
  164. Weber, M., J. J. Davies, D. Wittig, E. J. Oakeley, M. Haase, W. L. Lam & D. Schubeler (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet, 37, 853-62. otwiera się w nowej karcie
  165. Wu, Y. C., H. L. Lai, W. C. Chang, J. T. Lin, Y. J. Liu & Y. Chern (2013) A novel Galphas-binding protein, Gas-2 like 2, facilitates the signaling of the A2A adenosine receptor. Biochim Biophys Acta, 1833, 3145-54. otwiera się w nowej karcie
  166. Xia, H., M. P. Krebs, S. Kaushal & E. W. Scott (2011) Enhanced retinal pigment epithelium regeneration after injury in MRL/MpJ mice. Exp Eye Res, 93, 862-72. otwiera się w nowej karcie
  167. Xin, M., Y. Kim, L. B. Sutherland, M. Murakami, X. Qi, J. McAnally, E. R. Porrello, A. I. Mahmoud, W. Tan, J. M. Shelton, J. A. Richardson, H. A. Sadek, R. Bassel-Duby & E. N. Olson (2013a) Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci U S A, 110, 13839-44. otwiera się w nowej karcie
  168. Xin, M., E. N. Olson & R. Bassel-Duby (2013b) Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol, 14, 529-41. otwiera się w nowej karcie
  169. Yakushiji, N., M. Suzuki, A. Satoh, H. Ide & K. Tamura (2009) Effects of activation of hedgehog signaling on patterning, growth, and differentiation in Xenopus froglet limb regeneration. Dev Dyn, 238, 1887-96. otwiera się w nowej karcie
  170. Yakushiji, N., M. Suzuki, A. Satoh, T. Sagai, T. Shiroishi, H. Kobayashi, H. Sasaki, H. Ide & K. Tamura (2007) Correlation between Shh expression and DNA methylation status of the limb-specific Shh enhancer region during limb regeneration in amphibians. Dev Biol, 312, 171-82. otwiera się w nowej karcie
  171. Yang, Y., H. Cheng, Y. Qiu, D. K. Dupee, M. Noonan, Y. D. Lin, S. Fisch, K. Unno, K. I. Sereti & R. Liao (2015) MicroRNA-34a Plays a Key Role in Cardiac Repair and Regeneration Following Myocardial Infarction. Circ Res. otwiera się w nowej karcie
  172. Yoshida, T., M. Yamashita, C. Horimai & M. Hayashi (2014) Kruppel-like factor 4 protein regulates isoproterenol-induced cardiac hypertrophy by modulating myocardin expression and activity. J Biol Chem, 289, 26107-18. otwiera się w nowej karcie
  173. Yu, H., S. Mohan, G. L. Masinde & D. J. Baylink (2005) Mapping the dominant wound healing and soft tissue regeneration QTL in MRL x CAST. Mamm Genome, 16, 918-24. otwiera się w nowej karcie
  174. Zeybel, M., T. Hardy, Y. K. Wong, J. C. Mathers, C. R. Fox, A. Gackowska, F. Oakley, A. D. Burt, C. L. Wilson, Q. M. Anstee, M. J. Barter, S. Masson, A. M. Elsharkawy, D. A. Mann & J. Mann (2012) Multigenerational epigenetic adaptation of the hepatic wound-healing response. Nat Med, 18, 1369-77. otwiera się w nowej karcie
  175. Zhang, Y., I. Strehin, K. Bedelbaeva, D. Gourevitch, L. Clark, J. Leferovich, P. B. Messersmith & E. Heber-Katz (2015) Drug-induced regeneration in adult mice. Sci Transl Med, 7, 290ra92. otwiera się w nowej karcie
  176. Zhou, Z., D. R. Rawnsley, L. M. Goddard, W. Pan, X. J. Cao, Z. Jakus, H. Zheng, J. Yang, J. S. Arthur, K. J. Whitehead, D. Li, B. Zhou, B. A. Garcia, X. Zheng & M. L. Kahn (2015) The cerebral cavernous malformation pathway controls cardiac development via regulation of endocardial MEKK3 signaling and KLF expression. Dev Cell, 32, 168-80. otwiera się w nowej karcie
  177. Ziller, M. J., F. Muller, J. Liao, Y. Zhang, H. Gu, C. Bock, P. Boyle, C. B. Epstein, B. E. Bernstein, T. Lengauer, A. Gnirke & A. Meissner (2011) Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet, 7, e1002389. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 182 razy

Publikacje, które mogą cię zainteresować

Meta Tagi