Restrained differential of a graph - Publikacja - MOST Wiedzy

Wyszukiwarka

Restrained differential of a graph

Abstrakt

Given a graph $G=(V(G), E(G))$ and a vertex $v\in V(G)$, the {open neighbourhood} of $v$ is defined to be $N(v)=\{u\in V(G) :\, uv\in E(G)\}$. The {external neighbourhood} of a set $S\subseteq V(G)$ is defined as $S_e=\left(\cup_{v\in S}N(v)\right)\setminus S$, while the \emph{restrained external neighbourhood} of $S$ is defined as $S_r=\{v\in S_e : N(v)\cap S_e\neq \varnothing\}$. The restrained differential of a graph $G$ is defined as $\partial_r(G)=\max \{|S_r|-|S|:\, S\subseteq V(G)\}.$ In this paper, we introduce the study of the restrained differential of a graph. We show that this novel parameter is perfectly integrated into the theory of domination in graphs. We prove a Gallai-type theorem which shows that the theory of restrained differentials can be applied to develop the theory of restrained Roman domination, and we also show that the problem of finding the restrained differential of a graph is NP-hard. The relationships between the restrained differential of a graph and other types of differentials are also studied. Finally, we obtain several bounds on the restrained differential of a graph and we discuss the tightness of these bounds.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach dostępnych w wersji elektronicznej [także online]
Opublikowano w:
Discussiones Mathematicae Graph Theory strony 1 - 20,
ISSN: 1234-3099
Język:
angielski
Rok wydania:
2023
Opis bibliograficzny:
Cabrera-Martinez A., Dettlaff M., Lemańska M., Rodriguez-Velazquez J. A., Restrained differential of a graph, Discussiones Mathematicae Graph Theory, 2023,10.7151/dmgt.2532
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.7151/dmgt.2532
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 56 razy

Publikacje, które mogą cię zainteresować

Meta Tagi