Revisiting the estimation of cutting power with different energetic methods while sawing soft and hard woods on the circular sawing machine: a Central European case - Publikacja - MOST Wiedzy

Wyszukiwarka

Revisiting the estimation of cutting power with different energetic methods while sawing soft and hard woods on the circular sawing machine: a Central European case

Abstrakt

In the classical approaches, used in Central Europe in practice, cutting forces and cutting power in sawing processes of timber are commonly computed by means of the specific cutting resistance kc. It needs to be highlighted that accessible sources in handbooks and the scientific literature do not provide any data about wood provenance, nor about cutting conditions, in which cutting resistance has been empirically determined. In the analyses of sawing processes, the use of a model with elements of fracture mechanics involved is an alternative way. In this work, predictions of the newly developed model (FRAC_MOD) for the circular sawing machine are presented. Thanks to this modern approach, it was possible to reveal the usefulness of the FRAC_MOD, using experimental results data on fracture toughness and shear yield stresses of both Polish pine (Pinus sylvestris L.) and Czech beech wood (Fagus sylvatica L.). The achieved results were compared to the forecasted values obtained with classical models (CLAS_PL and CLAS_CZ), which are commonly applied in Central European sawmills. The carried out analyses allowed us to discover undesired effects in the form of underestimation of cutting power when applying the CLAS_PL and CLAS_CZ models. For that reason, the FRAC_MOD cutting model could be suggested for the prediction of energetic effects in cases of dynamical analyses and even unsteady cases.

Cytowania

  • 6

    CrossRef

  • 8

    Web of Science

  • 6

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 23 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
WOOD SCIENCE AND TECHNOLOGY nr 54, strony 457 - 477,
ISSN: 0043-7719
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Orłowski K., Ochrymiuk T., Hlaskova l., Chuchała D., Kopecky z.: Revisiting the estimation of cutting power with different energetic methods while sawing soft and hard woods on the circular sawing machine: a Central European case// WOOD SCIENCE AND TECHNOLOGY -Vol. 54, (2020), s.457-477
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s00226-020-01162-9
Bibliografia: test
  1. Altintas Y (2000) Modeling approaches and software for predicting the performance of milling opera- tions at MAL-UBC. Mach Sci Technol 4(3):445-478 otwiera się w nowej karcie
  2. Ammar AA, Bouaziz Z, Aghal A (2009) Modelling and simulation of the cutting forces for 2.5D pockets machining. Adv Prod Eng Manag 4(4):163-176
  3. Astakhov VP (2010) Chapter 2: Basic definitions and cutting tool geometry, single point cutting tools. In: Pham DT (ed) Geometry of single-point turning tools and drills. Fundamentals and practical applications. Springer series in advanced manufacturing. Springer, London, pp 54-101. https ://doi. org/10.1007/978-1-84996 -053-3 otwiera się w nowej karcie
  4. Atkins AG (2003) Modelling metal cutting using modern ductile fracture mechanics: quantitative expla- nations for some longstanding problems. Int J Mech Sci 45:373-396 otwiera się w nowej karcie
  5. Atkins AG (2005) Toughness and cutting: a new way of simultaneously determining ductile fracture toughness and strength. Eng Fract Mech 72:849-860 otwiera się w nowej karcie
  6. Atkins AG (2009) The science and engineering of cutting. The mechanics and process of separating, scratching and puncturing biomaterials, metals and non-metals. Butterworth-Heinemann is an imprint of Elsevier, Oxford otwiera się w nowej karcie
  7. Atkins T (2018) The importance of toughness in manufacturing. J Mater Process Technol 261:280-294. https ://doi.org/10.1016/j.jmatp rotec .2018.04.042 otwiera się w nowej karcie
  8. Axelsson BOM, Lundberg ÅS, Grönlund A (1993) Studies of the main cutting force at and near a cutting edge. Holz Roh Werkst 51(1):43-48 otwiera się w nowej karcie
  9. Beer P (2002) Obróbka skrawaniem obwodowym drewna nowo opracowanymi narzędziami (In Polish: Wood peeling with new elaborated tools). Roczniki Akademii Rolniczej w Poznaniu, Rozprawy Naukowe, Zeszyt 330. Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskiego w Pozna- niu, Poznań
  10. Beer P, Sinn G, Gindl M, Tschegg S (2005) Work of fracture and of chips formation during linear cut- ting of particle-board. J Mater Process Technol 159:224-228. https ://doi.org/10.1016/j.jmatp rotec .2004.05.009 otwiera się w nowej karcie
  11. Beršadskij AL (1967) Rasčet režimov rezaniá drevesiny (in Russian: Resolution of modes of wood machining). Lesnaá promyšlennosť, Moskva otwiera się w nowej karcie
  12. Böllinghaus T, Byrne G, Cherpakov BI, Chlebus E, Cross CE, Denkena B, Dilthey U, Hatsuzawa T, Her- furth K, Herold H et al (2009) Machining processes (Part 7-3 of chapter: manufacturing engineer- ing). In: Grote K-H, Antonsson KK (eds) Springer handbook of mechanical engineering. Springer, Würzburg, pp 609-656 otwiera się w nowej karcie
  13. Budak E (2006) Analytical models for high performance milling. Part I: cutting forces, structural defor- mations and tolerance integrity. Int J Mach Tools Manuf 46(12-13):1478-1488 otwiera się w nowej karcie
  14. Wood Science and Technology (2020) 54:457-477 otwiera się w nowej karcie
  15. Chuchala D, Orlowski KA, Sandak A, Sandak J, Pauliny D, Barański J (2014) The effect of wood prov- enance and density on cutting forces while sawing Scots pine (Pinus sylvestris L.). BioResources 9(3):5349-5361. https ://doi.org/10.15376 /biore s.9.3.5349-5361 otwiera się w nowej karcie
  16. Gere JM (2004) Mechanics of materials. Thomson Learning Inc. http://www.hljp.edu.cn/attac hment /20120 82008 46270 06.pdf. Accessed 18 Dec 2018 otwiera się w nowej karcie
  17. Glass SV, Zelinka SL (2010) Moisture relations and physical properties of wood, chapter 4. In: Wood handbook-wood as an engineering material. [online] (Centennial Edition). General technical report FPL-GTR-190. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI. http://www.fpl.fs.fed.us/docum nts/fplgt r/fpl_gtr19 0.pdf. Accessed 12 Feb 2020
  18. Grzesik W (2017) Advanced machining processes of metallic materials. Theory, modelling, and applica- tions, 2nd edn. Elsevier, Amsterdam. ISBN 978-0-444-63711-6 otwiera się w nowej karcie
  19. Grzesik W (2018) Podstawy skrawania materiałów konstrukcyjnych (in Polish: Fundamentals of con- struction materials cutting) Wydanie 3. Wydawnictwo Naukowo-Techniczne, Warszawa
  20. Hlásková L, Orlowski KA, Kopecký Z, Jedinák M (2015) Sawing processes as a way of determining frac- ture toughness and shear yield stresses of wood. BioResources 10(3):5381-5394 otwiera się w nowej karcie
  21. Hlásková L, Orlowski K, Kopecký Z, Sviták M, Ochrymiuk T (2018) Fracture toughness and shear yield strength determination for two selected species of central European provenance. BioResources 13(3):6171-6186. https ://doi.org/10.15376 /biore s.13.3.6171-6186 otwiera się w nowej karcie
  22. Hlásková L, Kopecký Z, Solař A, Potočka Z (2019) Cutting test as a source of fracture toughness and shear yield strength for axial-perpendicular model of wood cutting. Wood Fiber Sci 51(1):1-11. https ://doi.org/10.22382 /wfs-2019-006 otwiera się w nowej karcie
  23. Krenke T, Frybort S, Müller U (2017a) Determining cutting force parameters by applying a system func- tion. Mach Sci Technol 21(3):436-451. https ://doi.org/10.1080/10910 344.2017.12845 63 otwiera się w nowej karcie
  24. Krenke K, Frybort S, Müller U (2017b) Cutting force analysis of a linear cutting process of spruce. Wood Mater Sci Eng 13(5):279-285. https ://doi.org/10.1080/17480 272.2017.13249 16 otwiera się w nowej karcie
  25. Kvietková M, Gaff M, Gašparík M, Kminiak R, Kriš A (2015) Effect of number of saw blade teeth on noise level and wear of blade edges during cutting of wood. BioResources 10(1):1657-1666 otwiera się w nowej karcie
  26. Lisičan J (1996) Teoria a technika spracovania dreva. (in Slovak: Theory and wood technology). Matcen- trum, Zvolen. ISBN 80-967315-6-4
  27. Manžos FM (1974) Derevorežuŝie stanki, (in Russian: Wood cutting machine tools). Izdateľstvo Lesnaâ Promyšlennosť, Moskva otwiera się w nowej karcie
  28. Markopoulos AP (2013) Cutting mechanics and analytical modelling. In: Paulo Davim (ed) Finite element method in machining processes. Springer, London, pp 11-27. https ://doi. org/10.1007/978-1-4471-4330-7_2 otwiera się w nowej karcie
  29. Melo LE, Silva JR, Napoli A, Lima JT, Trugilho PF, Nascimento DF (2016) Study of the physical proper- ties of Corymbia citriodora wood for the prediction of specific cutting force. Sci For 44(111):701- 708. https ://doi.org/10.18671 /scifo r.v44n1 11.16 otwiera się w nowej karcie
  30. Minagawa M, Matsuda Y, Fujiwara Y, Fujii Y (2018) Relationship between crack propagation and the stress intensity factor in cutting parallel to the grain of hinoki (Chamaecyparis obtusa). J Wood Sci 64:758-766. https ://doi.org/10.1007/s1008 6-018-1760-6 otwiera się w nowej karcie
  31. Mohammadpanah A, Hutton SG (2016) Dynamics behavior of a guided spline spinning disk, sub- jected to conservative in-plane edge loads, analytical and experimental investigation. J Vib Acoust 138(4):041005-041005-11. https ://doi.org/10.1115/1.40334 56 otwiera się w nowej karcie
  32. Nascimento DF, Melo LE, Silva JR, Trugilho PF, Napoli A (2017) Effect of moisture content on spe- cific cutting energy consumption in Corymbia citriodora and Eucalyptus urophylla woods. Sci For 45(113):221-227. https ://doi.org/10.18671 /scifo r.v45n1 13.22 otwiera się w nowej karcie
  33. Nasir V, Cool J (2018) A review on wood machining: characterization, optimization, and monitoring of the sawing process. Wood Mater Sci Eng 15(1):1-16. https ://doi.org/10.1080/17480 272.2018.14654 65 otwiera się w nowej karcie
  34. Nasir V, Mohammadpanah A, Cool J (2018) The effect of rotation speed on the power consumption and cutting accuracy of guided circular saw: experimental measurement and analysis of saw critical and flutter speeds. Wood Mater Sci Eng. https ://doi.org/10.1080/17480 272.2018.15081 67 otwiera się w nowej karcie
  35. Naylor A, Hackney P (2013) A review of wood machining literature with a special focus on sawing. BioResources 8(2):3122-3135 otwiera się w nowej karcie
  36. Naylor A, Hackney P, Perera N, Clahr E (2012) A predictive model for the cutting force in wood machin- ing developed using mechanical properties. BioResources 7(3):2883-2894 otwiera się w nowej karcie
  37. Orlicz T (1988) Obróbka drewna narzędziami tnącymi. (in Polish: Wood processing with cutting tools). Skrypty SGGW-AR w Warszawie, Wydawnictwo SGGW-AR, Warszawa
  38. Orlowski KA (2010) The fundamentals of narrow-kerf sawing: the mechanics and quality of cutting. Pub- lishing house of the Technical University in Zvolen, Technical University in Zvolen Orlowski KA, Ochrymiuk T (2013) Revisiting the determination of cutting power while sawing of wood with circular saw blades by means of fracture mechanics. In: IWMS-21 Organizing Committee (eds) Proceedings of the 21st international wood machining seminar, August 4-7, 2011, Tsukuba, Japan. The Japan Wood Research Society, pp 46-55 otwiera się w nowej karcie
  39. Orlowski KA, Ochrymiuk T (2017) A newly-developed model for predicting cutting power during wood sawing with circular saw blades. Maderas Cienc Tecnol 19(2):149-162. https ://doi.org/10.4067/ S0718 -221X2 01700 50000 13 otwiera się w nowej karcie
  40. Orlowski KA, Walichnowski A (2013) Economic analysis of upper layer production of engineered floor- ings. Drewno 56(189):115-126. https ://doi.org/10.12841 /wood.1644-3985.022.08 otwiera się w nowej karcie
  41. Orlowski KA, Ochrymiuk T, Atkins A, Chuchala D (2013) Application of fracture mechanics for ener- getic effects predictions while wood sawing. Wood Sci Technol 47(5):949-963 otwiera się w nowej karcie
  42. Orlowski K, Ochrymiuk T, Atkins A (2014) An innovative approach to the forecasting of energetic effects while wood sawing. Drvna Ind 65(4):273-281. https ://doi.org/10.5552/drind .2014.1341 otwiera się w nowej karcie
  43. Orlowski KA, Ochrymiuk T, Sandak J, Sandak A (2017) Estimation of fracture toughness and shear yield stress of orthotropic materials in cutting with rotating tools. Eng Fract Mech 178:433-444. https :// doi.org/10.1016/j.engfr acmec h.2017.02.023 otwiera się w nowej karcie
  44. Pantea RC (1999) Wood cutting system: modelling and process simulation. Mémoire présen té à la Fac- ulté des études supérieures de l'université Laval pour l'obtention du grade de maître ès science (M.Sc.). Département de génie mécanique Faculté Des Sciences Et De Genie, Université Laval (National Library of Canada)
  45. Pinkowski G, Krauss A, Sydor M (2016) The effect of spiral grain on energy requirement of plane milling of Scots pine (Pinus sylvestris L.) wood. BioResources 11(4):9302-9310. https ://doi.org/10.15376 / biore s.11.4.9302-9310 otwiera się w nowej karcie
  46. Porankiewicz B, Axelsson B, Grönlund A, Marklund B (2011) Main and normal cutting forces by machining wood of Pinus sylvestris. BioResources 6(4):3687-3713
  47. Sandak J, Orłowski K, Ochrymiuk T, Sandak A, Riggio M (2017) Report for the Short Term Scientific Mission within COST Action FP1101: development of the in-field sensor for estimation of fracture toughness and shear strength by measuring cutting forces. Int Wood Prod J 8(1):34-38 otwiera się w nowej karcie
  48. Wang H, Chang L, Ye L, Williams JG (2015) On the toughness measurement for ductile polymers by orthogonal cutting. Eng Fract Mech 149:276-286. https ://doi.org/10.1016/j.engfr acmec h.2015.06.067 otwiera się w nowej karcie
  49. Wasielewski R, Orlowski KA, Szyszkowski S (2012) Economical wood sawing with circular saw blades of a new design. Drvna Ind 63(1):27-32. https ://doi.org/10.5552/drind .2012.1121 otwiera się w nowej karcie
  50. Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. otwiera się w nowej karcie
  51. Wood Science and Technology (2020) 54:457-477 otwiera się w nowej karcie
  52. Department of Manufacturing Engineering and Automation, Faculty of Mechanical Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland 2 Centre of Flow and Combustion, Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, Gdańsk, Poland 3 Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1/1665, 613 00 Brno, Czech Republic otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 38 razy

Publikacje, które mogą cię zainteresować

Meta Tagi