Role of the disulfide bond in stabilizing and folding of the fimbrial protein DraE from uropathogenic Escherichia coli - Publikacja - MOST Wiedzy

Wyszukiwarka

Role of the disulfide bond in stabilizing and folding of the fimbrial protein DraE from uropathogenic Escherichia coli

Abstrakt

Dr fimbriae are homopolymeric adhesive organelles of uropathogenic Escherichia coli composed of DraE subunits, responsible for the attachment to host cells. These structures are characterized by enormously high stability resulting from the structural properties of an Ig-like fold of DraE. One feature of DraE and other fimbrial subunits that makes them peculiar among Ig-like domain-containing proteins is a conserved disulfide bond that joins their A and B strands. Here, we investigated how this disulfide bond affects the stability and folding/unfolding pathway of DraE. We found that the disulfide bond stabilizes self-complemented DraE (DraE-sc) by ∼50 kJ mol-1 in an exclusively thermodynamic manner, i.e. by lowering the free energy of the native state and with almost no effect on the free energy of the transition state. This finding was confirmed by experimentally determined folding and unfolding rate constants of DraE-sc and a disulfide bond-lacking DraE-sc variant. Although the folding of both proteins exhibited similar kinetics, the unfolding rate constant changed upon deletion of the disulfide bond by 10 orders of magnitude, from ∼10-17 s-1 to 10-7 s-1 Molecular simulations revealed that unfolding of the disulfide bond-lacking variant is initiated by strands A or G and that disulfide bond-mediated joining of strand A to the core strand B cooperatively stabilizes the whole protein. We also show that the disulfide bond in DraE is recognized by the DraB chaperone, indicating a mechanism that precludes the incorporation of less stable, non-oxidized DraE forms into the fimbriae.

Cytowania

  • 8

    CrossRef

  • 0

    Web of Science

  • 9

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 58 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
JOURNAL OF BIOLOGICAL CHEMISTRY nr 292, strony 16136 - 16149,
ISSN: 0021-9258
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Pilipczuk J., Zalewska-Piątek B., Bruździak P., Czub J., Wieczór M., Olszewski M., Wanarska M., Nowicki B., Augustin-Nowacka D., Piątek R.: Role of the disulfide bond in stabilizing and folding of the fimbrial protein DraE from uropathogenic Escherichia coli// JOURNAL OF BIOLOGICAL CHEMISTRY. -Vol. 292, nr. 39 (2017), s.16136-16149
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1074/jbc.m117.785477
Bibliografia: test
  1. Nowicki, B., Hull, R., and Moulds, J. (1988) Use of the Dr hemagglutinin of uropathogenic Escherichia coli to differentiate normal from abnormal red cells in paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med. 319, 1289 -1290 otwiera się w nowej karcie
  2. Zavialov, A., Zav'yalova, G., Korpela, T., and Zav'yalov, V. (2007) FGL chaperone-assembled fimbrial polyadhesins: anti-immune armament of Gram-negative bacterial pathogens. FEMS Microbiol. Rev. 31, 478 -514 otwiera się w nowej karcie
  3. Cota, E., Jones, C., Simpson, P., Altroff, H., Anderson, K. L., du Merle, L., Guignot, J., Servin, A., Le Bouguénec, C., Mardon, H., and Matthews, S. (2006) The solution structure of the invasive tip complex from Afa/Dr fibrils. Mol. Microbiol. 62, 356 -366 otwiera się w nowej karcie
  4. Choudhury, D., Thompson, A., Stojanoff, V., Langermann, S., Pinkner, J., Hultgren, S. J., and Knight, S. D. (1999) X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285, 1061-1066 otwiera się w nowej karcie
  5. Zav'yalov, V., Zavialov, A., Zav'yalova, G., and Korpela, T. (2010) Adhesive organelles of Gram-negative pathogens assembled with the classical chap- erone/usher machinery: structure and function from a clinical standpoint. FEMS Microbiol. Rev. 34, 317-378 otwiera się w nowej karcie
  6. Folding and stability of DraE adhesin otwiera się w nowej karcie
  7. J. Biol. Chem. (2017) 292(39) 16136 -16149 otwiera się w nowej karcie
  8. Anderson, K. L., Billington, J., Pettigrew, D., Cota, E., Simpson, P., Roversi, P., Chen, H. A., Urvil, P., du Merle, L., Barlow, P. N., Medof, M. E., Smith, R. A., Nowicki, B., Le Bouguénec, C., Lea, S. M., et al. (2004) An atomic resolution model for assembly, architecture, and function of the Dr ad- hesins. Mol. Cell. 15, 647-657 otwiera się w nowej karcie
  9. Pettigrew, D., Anderson, K. L., Billington, J., Cota, E., Simpson, P., Urvil, P., Rabuzin, F., Roversi, P., Nowicki, B., du Merle, L., Le Bouguénec, C., Mat- thews, S., and Lea, S. M. (2004) High resolution studies of the Afa/Dr adhesin DraE and its interaction with chloramphenicol. J. Biol. Chem. 279, 46851-46867 otwiera się w nowej karcie
  10. Piatek, R., Zalewska, B., Kolaj, O., Ferens, M., Nowicki, B., and Kur, J. (2005) Molecular aspects of biogenesis of Escherichia coli Dr fimbriae: characterization of DraB-DraE complexes. Infect. Immun. 73, 135-145 otwiera się w nowej karcie
  11. Piatek, R., Bruździak, P., Zalewska-Piatek, B., Kur, J., and Stangret, J. (2009) The preclusion of irreversible destruction of Dr adhesin structures by a high activation barrier for unfolding stage of the fimbrial DraE subunit. Biochemistry 48, 11807-11816 otwiera się w nowej karcie
  12. Piatek, R., Bruździak, P., Wojciechowski, M., Zalewska-Piatek, B., and Kur, J. (2010) The noncanonical disulfide bond as the important stabilizing element of the immunoglobulin fold of the Dr fimbrial DraE subunit. Biochemistry 49, 1460 -1468 otwiera się w nowej karcie
  13. Puorger, C., Eidam, O., Capitani, G., Erilov, D., Grütter, M. G., and Glock- shuber, R. (2008) Infinite kinetic stability against dissociation of supramo- lecular protein complexes through donor strand complementation. Struc- ture 16, 631-642 otwiera się w nowej karcie
  14. Puorger, C., Vetsch, M., Wider, G., and Glockshuber, R. (2011) Structure, folding and stability of FimA, the main structural subunit of type 1 pili from uropathogenic Escherichia coli strains. J. Mol. Biol. 412, 520 -535 otwiera się w nowej karcie
  15. Zavialov, A. V., Tischenko, V. M., Fooks, L. J., Brandsdal, B. O., Aqvist, J., Zav'yalov, V. P., Macintyre, S., and Knight, S. D. (2005) Resolving the energy paradox of chaperone/usher-mediated fibre assembly. Biochem. J. 389, 685-694 otwiera się w nowej karcie
  16. Giese, C., Eras, J., Kern, A., Schärer, M. A., Capitani, G., and Glockshuber, R. (2016) Accelerating the association of the most stable protein-ligand complex by more than two orders of magnitude. Angew. Chem. Int. Ed. Engl. 55, 9350 -9355 otwiera się w nowej karcie
  17. Crespo, M. D., Puorger, C., Schärer, M. A., Eidam, O., Grütter, M. G., Capitani, G., and Glockshuber, R. (2012) Quality control of disulfide bond formation in pilus subunits by the chaperone FimC. Nat. Chem. Biol. 8, 707-713 otwiera się w nowej karcie
  18. Hung, D. L., Knight, S. D., Woods, R. M., Pinkner, J. S., and Hultgren, S. J. (1996) Molecular basis of two subfamilies of immunoglobulin-like chap- erones. EMBO J. 15, 3792-3805 otwiera się w nowej karcie
  19. Zav'yalov, V. P., Zav'yalova, G. A., Denesyuk, A. I., and Korpela, T. (1995) Modelling of steric structure of a periplasmic molecular chaperone Caf1M of Yersinia pestis, a prototype member of a subfamily with characteristic structural and functional features. FEMS Immunol. Med. Microbiol. 11, 19 -24 otwiera się w nowej karcie
  20. Zavialov, A. V., Berglund, J., Pudney, A. F., Fooks, L. J., Ibrahim, T. M., MacIntyre, S., and Knight, S. D. (2003) Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation. Cell 113, 587-596 otwiera się w nowej karcie
  21. Betz, S. F. (1993) Disulfide bonds and the stability of globular proteins. Protein Sci. 2, 1551-1558 otwiera się w nowej karcie
  22. Hamill, S. J., Steward, A., and Clarke, J. (2000) The folding of an immuno- globulin-like Greek key protein is defined by a common-core nucleus and regions constrained by topology. J. Mol. Biol. 297, 165-178 otwiera się w nowej karcie
  23. Roccatano, D., Daidone, I., Ceruso, M. A., Bossa, C., and Nola, A. (2003) Selective excitation of native fluctuations during thermal un- folding simulations: horse heart cytochrome c as a case study. Biophys J. 84, 1876 -1883 otwiera się w nowej karcie
  24. Zalewska-Piatek, B., Bury, K., Piatek, R., Bruzdziak, P., and Kur, J. (2008) Type II secretory pathway for surface secretion of DraD invasin from the uropathogenic Escherichia coli Drϩ strain. J. Bacteriol. 190, 5044 -5056
  25. Servin, A. L. (2005) Pathogenesis of Afa/Dr diffusely adhering Escherichia coli. Clin. Microbiol. Rev. 18, 264 -292 otwiera się w nowej karcie
  26. Korotkova, N., Cota, E., Lebedin, Y., Monpouet, S., Guignot, J., Servin, A. L., Matthews, S., and Moseley, S. L. (2006) A subfamily of Dr adhesins of Escherichia coli bind independently to decay-accelerating factor and the N-domain of carcinoembryonic antigen. J. Biol. Chem. 281, 29120 -29130 otwiera się w nowej karcie
  27. Hamill, S. J., Meekhof, A. E., and Clarke, J. (1998) The effect of boundary selection on the stability and folding of the third fibronectin type III do- main from human tenascin. Biochemistry 37, 8071-8079 otwiera się w nowej karcie
  28. Blomfield, I. C., McClain, M. S., and Eisenstein, B. I. (1991) Type 1 fimbriae mutants of Escherichia coli K12: characterization of recognized afimbriate strains and construction of new fim deletion mutants. Mol. Microbiol. 5, 1439 -1445 otwiera się w nowej karcie
  29. Carnoy, C., and Moseley, S. (1997) Mutational analysis of receptor binding mediated by the Dr family of Escherichia coli adhesins. Mol Microbiol. 23, 365-379 otwiera się w nowej karcie
  30. Zalewska, B., Piatek, R., Konopa, G., Nowicki, B., Nowicki, S., and Kur, J. (2003) Chimeric Dr fimbriae with a herpes simplex virus type 1 epitope as a model for a recombinant vaccine. Infect. Immun. 71, 5505-5513 otwiera się w nowej karcie
  31. Zav'yalov, V. P., Chernovskaya, T. V., Chapman, D. A., Karlyshev, A. V., MacIntyre, S., Zavialov, A. V., Vasiliev, A. M., Denesyuk, A. I., Zav'yalova, G. A., Dudich, I. V., Korpela, T., and Abramov, V. M. (1997) Influence of the conserved disulphide bond, exposed to the putative binding pocket, on the structure and function of the immunoglobulin-like molecular chaper- one Caf1M of Yersinia pestis. Biochem. J. 324, 571-578 otwiera się w nowej karcie
  32. Best, R. B., Zhu, X., Shim, J., Lopes, P. E., Mittal, J., Feig, M., Mackerell, A. D., Jr. (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone , and side- chain 1 and 2 dihedral angles. J. Chem. Theory Comput. 8, 3257-3273 otwiera się w nowej karcie
  33. Abraham, M. J., M. T. Schulz R., Páll, S., Smith, J. C., Hess, B., and Lindahl, E. (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19 -25 otwiera się w nowej karcie
  34. Tribello, G. A., B. M., Branduardi. D., Camilloni C., and Bussi, G. (2014) PLUMED 2: new feathers for an old bird. Comput. Phys. Commun. 185, 604 -613 otwiera się w nowej karcie
  35. Folding and stability of DraE adhesin J. Biol. Chem. (2017) 292(39) 16136 -16149 16149 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 118 razy

Publikacje, które mogą cię zainteresować

Meta Tagi