Seasonal contributions of nutrients from small urban and agricultural watersheds in northern Poland - Publikacja - MOST Wiedzy


Seasonal contributions of nutrients from small urban and agricultural watersheds in northern Poland


Diffuse sources of pollution like agricultural or urban runoff are important factors in determining the quality of surface waters, although they are more difficult to monitor thanpointsources.Theobjectiveofourstudywastoverifyassumptionsthattheinflow from agricultural nutrient sources is higher than from urbanized ones. It has been done by comparing the nutrients and organic matter concentrations and loads for three small streams in northern Poland (Pomerania Region). Two streams flowing through agricultural catchments and an urban stream flowing through the city of Gdansk were analysed. Concentrations of nutrients: N-NO− 3 N-NH+ 4 , P-PO3− 4 , total phosphorus, total nitrogen and COD were measured 1–3 times per month in the periodfromJuly2017toDecember2018inagriculturalwatershedsandfromOctober 2016 to March 2018 for an urban stream. Seasonal changes in concentrations were analysed with descriptive statistics tools. Principal Component Analysis (PCA) was used to point out the most significant factors determining variations in nutrients and organic matter concentrations with respect to different seasons. The factors included a number of characteristics regarding the catchment and streams: total catchment area, stream length, watershed form ratio, stream slope, flow rate and land use with respecttopavedareas,agriculturalareasandgreenareas(parks,forests,meadowsand pastures). Although concentrations of nitrogen compounds were higher in streams flowing through agricultural areas, our study showed that total concentrations of phosphoruswerehigherintheurbanstream,especiallyinsummer.Inagriculturalareas thesummerconcentrationsofnutrientswerenothigh,whichwasprobablyduetodense vegetation.ThecorrelationbetweenP-PO3− 4 concentrationandsizeofagriculturalarea in the catchment was observed in winter when no vegetation field cover exists. Our study shows an urgent need to monitor the nutrient loads carried with urban streams especially if discharged into receivers prone to eutrophication.


  • 5


  • 6

    Web of Science

  • 5


Cytuj jako

Pełna treść

pobierz publikację
pobrano 10 razy
Wersja publikacji
Accepted albo Published Version
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Publikacja w czasopiśmie
artykuły w czasopismach
Opublikowano w:
PeerJ nr 8, strony 1 - 22,
ISSN: 2167-8359
Rok wydania:
Opis bibliograficzny:
Matej-Łukowicz K., Wojciechowska E., Nawrot N., Dzierzbicka-Głowacka L.: Seasonal contributions of nutrients from small urban and agricultural watersheds in northern Poland// PeerJ -Vol. 8, (2020), s.1-22
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.7717/peerj.8381
Bibliografia: test
  1. Anderson DM, Burkholder JM, Cochlan WP, Glibert PM, Gobler CJ, Heil CA, Kudela RM, Parsons ML, Rensel JEJ, Townsend DW, Trainer VL, Vargo GA. 2008. Harmful algal blooms and eutrophication: examining linkages from selected coastal regions of the United States. Harmful Algae 8:39-53 DOI 10.1016/j.hal.2008.08.017. otwiera się w nowej karcie
  2. Badruzzaman M, Pinzon J, Oppenheimer J, JosephG Jacangelo. 2012. Sources of nutrients impacting surface waters in Florida: a review. Journal of Environmental Management 109:80-92 DOI 10.1016/j.jenvman.2012.04.040. otwiera się w nowej karcie
  3. Kanclerz J, Murat-Błazejewska S, Dragon K, Birk S. 2016. Impact of urbanization of suburban area on water relation in the small catchments. Ecological Engineering 94-99 DOI 10.12912/23920629/61470. otwiera się w nowej karcie
  4. Kaushal SS, Groffman PM, Band LE, Shields CA, Morgan RP, Palmer MA, Belt KT, Swan CM, Findlay SEG, Fisher GT. 2008. Interaction between urbanization and climate variability amplifies watershed nitrate export in Maryland. Environmental Science & Technology 42:5872-5878 DOI 10.1021/es800264. otwiera się w nowej karcie
  5. Kowalkowski T, Pastuszak M, Igras J, Buszewski B. 2012. Differences in emission of nitrogen and phosphorus into the Vistula and Oder basins in 1995-2008-natural and anthropogenic causes (MONERIS model). Journal of Marine Systems 89:48-60 DOI 10.1016/j.jmarsys.2011.07.011. otwiera się w nowej karcie
  6. Li S, Ni M, Mao R, Bush RT. 2018. Riverine CO2 supersaturation and outgassing in a subtropical monsoonal mountainous area (Three Gorges Reservoir Region) of China. Journal of Hydrology 558:460-469 DOI 10.1016/j.jhydrol.2018.01.057. otwiera się w nowej karcie
  7. Lin J, Böhlke JK, Huang S, Gonzalez-Meler M, Sturchio NC. 2019. Seasonality of nitrate sources and isotopic composition in the Upper Illinois River. Journal of Hydrology 568:849-861 DOI 10.1016/j.jhydrol.2018.11.043. otwiera się w nowej karcie
  8. Mbuligwe SE, Kaseva ME. 2005. Pollution and self-cleansing of an urban river in a developing country: a case study in Dar es Salaam, Tanzania. Environmental Management 36:328-342 DOI 10.1007/s00267-003-0068-4. otwiera się w nowej karcie
  9. Moring JB. 2009. Effects of urbanization on the chemical, physical, and biological char- acteristics of small blackland prairie dtreams in and near the Dallas-Fort Worth Metropolitan Area, Texas: Chapter C in Effects of urbanization on stream ecosystems in six metropolitan areas of the United States. Reston: US Geological Survey DOI 10.3133/sir20065101C. otwiera się w nowej karcie
  10. Nausch M, Woelk J, Kahle P, Nausch G, Leipe T, Lennartz B. 2017. Phosphorus fractions in discharges from artificially drained lowland catchments (Warnow River, Baltic Sea). Agricultural Water Management 187:77-87 DOI 10.1016/j.agwat.2017.03.006. otwiera się w nowej karcie
  11. O'Driscoll M, Clinton S, Jefferson A, Manda A, McMillan S. 2010. Urbanization effects on watershed hydrology and in-stream processes in the Southern United States. Water 2:605-648 DOI 10.3390/w2030605. otwiera się w nowej karcie
  12. Oudin L, Salavati B, Furusho-Percot C, Ribstein P, Saadi M. 2018. Hydrological impacts of urbanization at the catchment scale. Journal of Hydrology 559:774-786 DOI 10.1016/j.jhydrol.2018.02.064. otwiera się w nowej karcie
  13. Øygarden L, Deelstra J, Lagzdins A, Bechmann M, Greipsland I, Kyllmar K, Povi- laitis A, Iital A. 2014. Climate change and the potential effects on runoff and nitrogen losses in the Nordic-Baltic region. Agriculture, Ecosystems & Environment 198:114-126 DOI 10.1016/j.agee.2014.06.025. otwiera się w nowej karcie
  14. Pacheco FAL, Fernandes LFS. 2016. Environmental land use conflicts in catchments: a major cause of amplified nitrate in river water. Science of The Total Environment 548-549:173-188 DOI 10.1016/j.scitotenv.2015.12.155. otwiera się w nowej karcie
  15. Padedda BM, Sechi N, Lai GG, Mariani MA, Pulina S, Sarria M, Satta CT, Virdis T, Buscarinu P, Lugliè A. 2017. Consequences of eutrophication in the management of water resources in Mediterranean reservoirs: a case study of Lake Cedrino (Sardinia, Italy). Global Ecology and Conservation 12:21-35 DOI 10.1016/j.gecco.2017.08.004. otwiera się w nowej karcie
  16. Paul MJ, Meyer JL. 2001. Streams in the Urban Landscape. Annual Review of Ecology and Systematics 32:333-365 DOI 10.1146/annurev.ecolsys.32.081501.114040. otwiera się w nowej karcie
  17. Pietrzak S. 2018. ''Impact of farms on the environment of the Puck Commune'' in the area of farm questionnaires. otwiera się w nowej karcie
  18. Pitt R, Maestre A, Morquecho R, Brown T, Schueler T, Cappiella K, Strum P, Swann C. 2004. National Stormwater Quality Database (NSQD) Center for Watershed Protection, Ellicott City, Maryland. otwiera się w nowej karcie
  19. Potrykus D, Gumuła-Kawęcka A, Jaworska-Szulc B, Pruszkowska-Caceres M, Szymkiewicz A, Dzierzbicka-Głowacka L. 2018. Assessing groundwater vulner- ability to sea water intrusion in the coastline of the inner Puck Bay using GALDIT method. E3S Web of Conferences 54:00023 DOI 10.1051/e3sconf/20185400023. otwiera się w nowej karcie
  20. Pratt B, Chang H. 2012. Effects of land cover, topography, and built structure on seasonal water quality at multiple spatial scales. Journal of Hazardous Materials 209- 210:48-58 DOI 10.1016/j.jhazmat.2011.12.068. otwiera się w nowej karcie
  21. Rekolainen S, Pitkaenen H, Bleeker A, Felix S. 1995. Nitrogen and phosphorus fluxes from finnish agricultural areas to the Baltic Sea. Hydrology Research 26:55-72 DOI 10.2166/nh.1995.0004. otwiera się w nowej karcie
  22. SATBALTYK. 2018. SATBALTYK-satellite control of the Baltic Sea environment.
  23. Schueler TR, Fraley-McNeal L, Cappiella K. 2009. Is impervious cover still impor- tant? review of recent research. Journal of Hydrologic Engineering 14:309-315 DOI 10.1061/(ASCE)1084-0699(2009)14:4(309). otwiera się w nowej karcie
  24. Shi P, Zhang Y, Li Z, Li P, Xu G. 2017. Influence of land use and land cover pat- terns on seasonal water quality at multi-spatial scales. CATENA 151:182-190 DOI 10.1016/j.catena.2016.12.017. otwiera się w nowej karcie
  25. Shoemaker CM, Ervin GN, DiOrio EW. 2017. Interplay of water quality and vegetation in restored wetland plant assemblages from an agricultural landscape. Ecological Engineering 108:255-262 DOI 10.1016/j.ecoleng.2017.08.034. otwiera się w nowej karcie
  26. Smith VH, Schindler DW. 2009. Eutrophication science: where do we go from here? Trends in Ecology & Evolution 24:201-207 DOI 10.1016/j.tree.2008.11.009. otwiera się w nowej karcie
  27. Sonesten L, Svendsen LM, Tornbjerg H, Gustafsson B, Frank-Kamenetsky D, Haa- paniemi J. 2018. Sources and pathways of nutrients to the Baltic Sea. Helsinki: HELCOM. Statistical atlas of Pomorskie Voivodship. 2018. Gdansk. Statistics Poland.
  28. Svendsen LM, Bartnicki J, Boutrup S, Gustafsson B, Jarosiński W, Knuuttila S, Kotilainen P, Larsen SE, Pyhälä M, Ruoho-Airola T, Sonesten L, Staaf H. 2015. Updated fifth baltic sea pollution load compilation (PLC-55). Helsinki: HELCOM.
Politechnika Gdańska

wyświetlono 27 razy

Publikacje, które mogą cię zainteresować

Meta Tagi