Shape Memory Polyurethane Materials Containing Ferromagnetic Iron Oxide and Graphene Nanoplatelets - Publikacja - MOST Wiedzy

Wyszukiwarka

Shape Memory Polyurethane Materials Containing Ferromagnetic Iron Oxide and Graphene Nanoplatelets

Abstrakt

Intelligent materials, such as memory shape polymers, have attracted considerable attention due to wide range of possible applications. Currently, intensive research is underway, in matters of obtaining memory shape materials that can be actuated via inductive methods, for example with help of magnetic field. In this work, an attempt was made to develop a new polymer composite—polyurethane modified with graphene nanoplates and ferromagnetic iron oxides—with improved mechanical properties and introduced magnetic and memory shape properties. Based on the conducted literature review, gathered data were compared to the results of similar materials. Obtained materials were tested for their thermal, rheological, mechanical and shape memory properties. Structure of both fillers and composites were also analyzed using various spectroscopic methods. The addition of fillers to the polyurethane matrix improved the mechanical and shape memory properties, without having a noticeable impact on thermal properties. As it was expected, the high content of fillers caused a significant change in viscosity of filled prepolymers (during the synthesis stage). Each of the studied composites showed better mechanical properties than the unmodified polyurethanes. The addition of magnetic particles introduced additional properties to the composite, which could significantly expand the functionality of the materials developed in this work.

Cytowania

  • 1 0

    CrossRef

  • 1 0

    Web of Science

  • 1 1

    Scopus

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Materials nr 10, strony 1 - 23,
ISSN: 1996-1944
Rok wydania:
2017
Opis bibliograficzny:
Urban M., Strankowski M.: Shape Memory Polyurethane Materials Containing Ferromagnetic Iron Oxide and Graphene Nanoplatelets// Materials. -Vol. 10, iss. 9 (2017), s.1-23
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/ma10091083
Bibliografia: test
  1. Hu, J. Shape Memory Polymers: Fundamentals, Advances, and Applications; otwiera się w nowej karcie
  2. Smithers Information Ltd.: Akron, OH, USA, 2014. otwiera się w nowej karcie
  3. Mohr, R.; Kratz, K.; Weigel, T.; Lucka-Gabor, M.; Moneke, M.; Lendlein, A. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc. Natl. Acad. Sci. USA 2006, 103, 3540-3545. [CrossRef] [PubMed] otwiera się w nowej karcie
  4. Hyun, D.C. Magnetically-controlled, pulsatile drug release from poly (ε-caprolactone) (PCL) particles with hollow interiors. Polymer 2015, 74, 159-165. [CrossRef] otwiera się w nowej karcie
  5. Stauffer, P.R.; Cetas, T.C.; Jones, R.C. Magnetic Induction Heating of Ferromagnetic Implants for Inducing Localized Hyperthermia in Deep-Seated Tumors. IEEE Trans. Biomed. Eng. 1984, BME-31, 235-251. [CrossRef] [PubMed] otwiera się w nowej karcie
  6. Ramanathan, T.; Abdala, A.A.; Stankovich, S.; Dikin, D.A.; Herrera-Alonso, M.; Piner, R.D.; Adamson, D.H.; Schniepp, H.C.; Chen, X.; Ruoff, R.S.; et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327-331. [CrossRef] [PubMed] otwiera się w nowej karcie
  7. Martinez-Boubeta, C.; Simeonidis, K.; Serantes, D.; Conde-Leborán, I.; Kazakis, I.; Stefanou, G.; Pena, L.; Galceran, R.; Balcells, L.; Monty, C.; et al. Adjustable hyperthermia response of self-assembled ferromagnetic Fe-MgO core-shell nanoparticles by tuning dipole-dipole interactions. Adv. Funct. Mater. 2012, 22, 3737-3744. [CrossRef] otwiera się w nowej karcie
  8. Venkatraman, S.S.; Tan, L.P.; Joso, J.F.D.; Boey, Y.C.F.; Wang, X. Biodegradable stents with elastic memory. Biomaterials 2006, 27, 1573-1578. [CrossRef] [PubMed] otwiera się w nowej karcie
  9. Yu, X.; Zhou, S.; Zheng, X.; Guo, T.; Xiao, Y.; Song, B. A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity. Nanotechnology 2009, 20, 235702. [CrossRef] [PubMed] otwiera się w nowej karcie
  10. Buckley, P.R.; Mckinley, G.H.; Wilson, T.S.; Small, W.; Benett, W.J.; Bearinger, J.P.; Mcelfresh, M.W.; Maitland, D.J. Inductively-Heated Shape Memory Polymer for the Magnetic Actuation of Medical Devices. IEEE Trans. Biomed. Eng. 2006, 53, 2075-2083. [CrossRef] [PubMed] otwiera się w nowej karcie
  11. Yoonessi, M.; Peck, J.A.; Bail, J.L.; Rogers, R.B.; Lerch, B.A.; Meador, M.A. Transparent large-strain thermoplastic polyurethane magnetoactive nanocomposites. ACS Appl. Mater. Interfaces 2011, 3, 2686-2693. [CrossRef] [PubMed] otwiera się w nowej karcie
  12. Cai, Y.; Jiang, J.-S.; Zheng, B.; Xie, M.-R.; Jiang, J.-S. Synthesis and Properties of Magnetic Sensitive Shape Memory Fe 3 O 4 /Poly(e-caprolactone)-Polyurethane Nanocomposites. J. Appl. Polym. Sci. 2013, 127, 49-56. [CrossRef] otwiera się w nowej karcie
  13. Zou, H.; Weder, C.; Simon, Y.C. Shape-Memory Polyurethane Nanocomposites with Single Layer or Bilayer Oleic Acid-Coated Fe 3 O 4 Nanoparticles. Macromol. Mater. Eng. 2015, 300, 885-892. [CrossRef] otwiera się w nowej karcie
  14. Hergt, R.; Andra, W.; d'Ambly, C.G.; Hilger, I.; Kaiser, W.A.; Richter, U.; Schmidt, H.-G. Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn. 1998, 34, 3745-3754. otwiera się w nowej karcie
  15. Thanh, N.T. Magnetic Nanoparticles: From Fabrication to Clinical Applications; otwiera się w nowej karcie
  16. Taylor & Francis Group: Didcot, UK, 2012. otwiera się w nowej karcie
  17. Yu, W.; Chattopadhyay, S.; Lim, T.-C.; Rajendra Acharya, U. Advances in Therapeutic Engineering; otwiera się w nowej karcie
  18. Taylor & Francis Group: Didcot, UK, 2013. otwiera się w nowej karcie
  19. Zhang, X.; Lu, X.; Wang, Z.; Wang, J.; Sun, Z. Biodegradable shape memory nanocomposites with thermal and magnetic field responsiveness. J. Biomater. Sci. Polym. Ed. 2013, 24, 1057-1070. [CrossRef] [PubMed] otwiera się w nowej karcie
  20. Yadav, S.K.; Cho, J.W. Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Appl. Surf. Sci. 2013, 266, 360-367. [CrossRef] otwiera się w nowej karcie
  21. Kausar, A.; Rahman, A.U. Effect of graphene nanoplatelet addition on properties of thermo-responsive shape memory polyurethane-based nanocomposite. Fuller. Nanotub. Carbon Nanostruct. 2016, 24, 235-242. [CrossRef] otwiera się w nowej karcie
  22. Chen, S.; Zhang, S.; Jin, T.; Zhao, G. Synthesis and characterization of novel covalently linked waterborne polyurethane/Fe 3 O 4 nanocomposite films with superior magnetic, conductive properties and high latex storage stability. Chem. Eng. J. 2016, 286, 249-258. [CrossRef] otwiera się w nowej karcie
  23. Liu, Y.; Han, C.; Tan, H.; Du, X. Thermal, mechanical and shape memory properties of shape memory epoxy resin. Mater. Sci. Eng. A 2010, 527, 2510-2514. [CrossRef] otwiera się w nowej karcie
  24. Jung, Y.C.; Yoo, H.J.; Kim, Y.A.; Cho, J.W.; Endo, M. Electroactive shape memory performance of polyurethane composite having homogeneously dispersed and covalently crosslinked carbon nanotubes. Carbon 2010, 48, 1598-1603. [CrossRef] otwiera się w nowej karcie
  25. Kim, J.T.; Jeong, H.J.; Park, H.C.; Jeong, H.M.; Bae, S.Y.; Kim, B.K. Electroactive shape memory performance of polyurethane/graphene nanocomposites. React. Funct. Polym. 2015, 88, 1-7. [CrossRef] otwiera się w nowej karcie
  26. Yi, D.H.; Yoo, H.J.; Mahapatra, S.S.; Kim, Y.A.; Cho, J.W. The synergistic effect of the combined thin multi-walled carbon nanotubes and reduced graphene oxides on photothermally actuated shape memory polyurethane composites. J. Colloid Interface Sci. 2014, 432, 128-134. [CrossRef] [PubMed] otwiera się w nowej karcie
  27. Geng, Y.; Wang, S.J.; Kim, J.K. Preparation of graphite nanoplatelets and graphene sheets. J. Colloid Interface Sci. 2009, 336, 592-598. [CrossRef] [PubMed] otwiera się w nowej karcie
  28. Kalita, H.; Karak, N. Fe 3 O 4 Nanoparticles Decorated Multi-Walled Carbon Nanotube/Hyperbranched Polyurethane Nanocomposites as Shape Memory Materials. J. Nanoeng. Nanomanuf. 2013, 3, 194-201. [CrossRef] otwiera się w nowej karcie
  29. Inuwa, I.M.; Hassan, A.; Samsudin, S.A.; Kassim, M.H.M.; Jawaid, M. Mechanical and thermal properties of exfoliated graphite nanoplatelets reinforced polyethylene terephthalate/polypropylene composites. Polym. Compos. 2014, 35, 2029-2035. [CrossRef] otwiera się w nowej karcie
  30. Patole, A.S.; Patole, S.P.; Kang, H.; Yoo, J.B.; Kim, T.H.; Ahn, J.H. A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization. J. Colloid Interface Sci. 2010, 350, 530-537. [CrossRef] [PubMed] otwiera się w nowej karcie
  31. Keramati, M.; Ghasemi, I.; Karrabi, M.; Azizi, H.; Sabzi, M. Incorporation of Surface Modified Graphene Nanoplatelets for Development of Shape Memory PLA Nanocomposite. Fibers Polym. 2016, 17, 1062-1068. [CrossRef] otwiera się w nowej karcie
  32. Dutta, S.; Karak, N. Effect of the NCO/OH ratio on the properties of Mesua Ferrea L. seed oil-modified polyurethane resins. Polym. Int. 2006, 55, 49-56. [CrossRef] otwiera się w nowej karcie
  33. Varganici, C.D.; Durdureanu-Angheluta, A.; Rosu, D.; Pinteala, M.; Simionescu, B.C. Thermal degradation of magnetite nanoparticles with hydrophilic shell. J. Anal. Appl. Pyrolysis 2012, 96, 63-68. [CrossRef] otwiera się w nowej karcie
  34. Cai, Y.; Jiang, J.S.; Liu, Z.W.; Zeng, Y.; Zhang, W.G. Magnetically-sensitive shape memory polyurethane composites crosslinked with multi-walled carbon nanotubes. Compos. Part A 2013, 53, 16-23. [CrossRef] otwiera się w nowej karcie
  35. Razzaq, M.Y.; Anhalt, M.; Frormann, L.; Weidenfeller, B. Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers. Mater. Sci. Eng. A 2007, 444, 227-235. [CrossRef] otwiera się w nowej karcie
  36. Kostagiannakopoulou, C.; Fiamegkou, E.; Sotiriadis, G.; Kostopoulos, V. Thermal Conductivity of Carbon Nanoreinforced Epoxy Composites. J. Nanomater. 2016, 2016, 1847325. [CrossRef] otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 34 razy

Publikacje, które mogą cię zainteresować

Meta Tagi