Simulations of hydro-fracking in rock mass at meso-scale using fully coupled DEM/CFD approach - Publikacja - MOST Wiedzy

Wyszukiwarka

Simulations of hydro-fracking in rock mass at meso-scale using fully coupled DEM/CFD approach

Abstrakt

The paper deals with two-dimensional (2D) numerical modelling of hydro-fracking (hydraulic fracturing) in rocks at the meso-scale. A numerical model was developed to characterize the properties of fluid-driven fractures in rocks by combining the discrete element method (DEM) with computational fluid dynamics (CFD). The mechanical behaviour of the rock matrix was simulated with DEM and the behaviour of the fracturing fluid flow in newly developed and pre- existing fractures with CFD. The changes in the void geometry in the rock matrix were taken into account. The initial 2D hydro-fracking simulation tests were carried out for a rock segment under biaxial compression with one injection slot in order to validate the numerical model. The qualitative effect of several parameters on the propagation of a hydraulic fracture was studied: initial porosity of the rock matrix, dynamic viscosity of the fracking fluid, rock strength and pre- existing fracture. The characteristic features of a fractured rock mass due to a high-pressure injection of fluid were realistically modelled by the proposed coupled approach.

Cytowania

  • 1 2

    CrossRef

  • 1 0

    Web of Science

  • 1 3

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 7 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Acta Geotechnica nr 15, strony 297 - 324,
ISSN: 1861-1125
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Krzaczek M., Nitka M., Kozicki J., Tejchman-Konarzewski A.: Simulations of hydro-fracking in rock mass at meso-scale using fully coupled DEM/CFD approach// Acta Geotechnica -Vol. 15, (2020), s.297-324
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s11440-019-00799-6
Bibliografia: test
  1. Batchelor G (2000) An introduction to fluid dynamics. Cam- bridge University Press, Cambridge
  2. Bluhm-Drenhaus T, Simsek E, Wirtz S, Scherer V (2010) A coupled fluid dynamic-discrete element simulation of heat and mass transfer in a lime shaft kiln. Chem Eng Sci 65(9):2821-2834 otwiera się w nowej karcie
  3. Boutt DF, Cook BK, Williams JR (2011) A coupled fluid-solid model for problems in geomechanics: application to sand pro- duction. Int J Numer Anal Methods Geomech 35:997-1018 otwiera się w nowej karcie
  4. Catalano E, Chareyre B, Barthélémy E (2014) Pore-scale mod- eling of fluid-particles interaction and emerging poromechanical effects. Int J Numer Anal Methods Geomech 38:51-71 otwiera się w nowej karcie
  5. Chau VT, Bažant ZP, Su Y (2016) Growth model for large branched three-dimensional hydraulic crack system in gas or oil shale. Philos Trans R Soc A 374:20150418 otwiera się w nowej karcie
  6. Courant R, Friedrichs K, Lewy H (1967) On the partial difference equations of mathematical physics. IBM J Res Dev 11:215-234 otwiera się w nowej karcie
  7. Cundall PA, Hart R (1992) Numerical modelling of discontinua. Eng Comput 9(1992):101-113 otwiera się w nowej karcie
  8. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47-65 otwiera się w nowej karcie
  9. Damjanac B, Detournay C, Cundall PA (2016) Application of particle and lattice codes to simulation of hydraulic fracturing. Comput Part Mech 3(2):249-261 otwiera się w nowej karcie
  10. De Simone S, Vilarrasa V, Carrera A, Alcolea A, Meier P (2013) Thermal coupling may control mechanical stability of geothermal reservoirs during cold water injection. Phys Chem Earth 64:117-126 otwiera się w nowej karcie
  11. Deo M, Sorkhabi R, McLennan J, Bhide R, Zhao N, Sonntag R, Evans J (2013) Gas production forecasting from tight gas reser- voirs: Integrating natural fracture networks and hydraulic frac- tures. Final Report to RPSEA: 07122-44
  12. Ebrahimi M, Crapper M (2017) CFD-DEM simulation of tur- bulence modulation in horizontal pneumatic conveying. Partic- uology 31:15-24 otwiera się w nowej karcie
  13. Ergenzinger C, Seifried R, Eberhard PA (2011) Discrete element model to describe failure of strong rock in uniaxial compression. Granul Matter 12(4):341-364 otwiera się w nowej karcie
  14. Fernandez J, Cleary P, Sinnott M, Morrison R (2011) Using SPH one-way coupled to DEM to model wet industrial banana screens. Min Eng 24:741-753 otwiera się w nowej karcie
  15. Figueiredoa B, Tsanga C-F, Rutqvistb J, Niemia A (2017) Study of hydraulic fracturing processes in shale formations with com- plex geological settings. J Petrol Sci Eng 152:361-374 otwiera się w nowej karcie
  16. Gandossi L, Von Estorff U (2015) An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production. Scientific and Technical Research Reports. Joint Research Centre of the European Commission. Publications Office of the European Union. https://doi.org/10.2790/379646 otwiera się w nowej karcie
  17. Gao Q, Tao J, Hu J, Yu X (2015) Laboratory study on the mechanical behaviors of an anisotropic shale Rock. J Rock Mech Geotechn Eng 7:213-219 otwiera się w nowej karcie
  18. Ghassemi A, Kumar GS (2007) Changes in fracture aperture and fluid pressure due to thermal stress and silica dissolution/precipitation induced by heat extraction from sub- surface rocks. Geothermics 36:115-140 otwiera się w nowej karcie
  19. Hamrock BJ, Schmid SR, Jacobson BO (2004) Fundamentals of fluid film lubrication. Taylor & Francis, Routledge otwiera się w nowej karcie
  20. Hökmark H, Lönnqvist M, Fälth B (2010) Technical report TR- 10-23. THM-issues in repository rock-thermal, mechanical, thermo-mechanical and hydro-mechanical evolution of the rock at the Forsmark and Laxemar sites. SKB-Swedish Nuclear Fuel and Waste Management Co., pp 26-27 otwiera się w nowej karcie
  21. Hossain MM, Rahman MK (2008) Numerical simulation of complex fracture growth during tight reservoir stimulation by hydraulic fracturing. J Petrol Sci Eng 60(2):86-104 otwiera się w nowej karcie
  22. Jalali MR, Evans KF, Valley BC, Dusseault MB (2015) Relative Importance of THM Effects during non-isothermal fluid injection in fractured media. In: Proc Amer Rock Mech Assoc Conf ARMA 15-0175
  23. Joekar-Niasar V, van Dijke M, Hassanizadeh S (2012) Pore-scale modeling of multiphase flow and transport: achievements and perspectives. Transp Porous Media 94(2):461-464 otwiera się w nowej karcie
  24. Kahagalage S, Tordesillas A, Nitka M, Tejchman J (2017) Of cuts and cracks: data analytics on constrained graphs for early prediction of failure in cementitious materials. In: Proc. powders and grains, 2017 otwiera się w nowej karcie
  25. Kozicki J, Donzé FV (2008) A new open-source software developer for numerical simulations using discrete modeling methods. Comput Methods Appl Mech Eng 197:4429-4443 otwiera się w nowej karcie
  26. Kozicki J, Tejchman J (2018) Relationship between vortex structures and shear localization in 3D granular specimens based on combined DEM and Helmholtz-Hodge decomposition. Granul Matter 20:48, 1-24 otwiera się w nowej karcie
  27. Kozicki J, Tejchman J, Mróz Z (2012) Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM. Granul Matter 14(2012):457-468 otwiera się w nowej karcie
  28. Kozicki J, Niedostatkiewicz M, Tejchman J, Mühlhaus H-B (2013) Discrete modelling results of a direct shear test for granular materials versus FE results. Granul Matter 15(5):607-627 otwiera się w nowej karcie
  29. Kozicki J, Tejchman J, M} uhlhaus H-B (2014) Discrete simula- tions of a triaxial compression test for sand by DEM. Int J Numer Anal Methods Geomech 38:1923-1952 otwiera się w nowej karcie
  30. Lathama JP, Munjiz A, Mindel J, Xiang J, Guises R, Garcia X, Pain C, Gorman G, Piggott M (2008) Modelling of massive particulates for breakwater engineering using coupled FEMDEM and CFD. Particuology 6:572-583 otwiera się w nowej karcie
  31. Lisjak A, Grasselli G (2014) A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. J Rock Mech Geotech Eng 6(4):301-314 otwiera się w nowej karcie
  32. Ma X, Zhou T, Zou Y (2017) Experimental and numerical study of hydraulic fracture geometry in shale formations with complex geologic conditions. J Struct Geol. https://doi.org/10.1016/j.jsg. 2017.02.004 otwiera się w nowej karcie
  33. Mansouri M, Delenne J-F, El Youssoufi MS, Seridi A (2009) A 3D DEM-LBM approach for the assessment of the quick condi- tion for sands. C R Mecanique 337:675-681 otwiera się w nowej karcie
  34. Markauskas D, Kruggel-Emdena H, Sivanesapillai R, Steeb H (2017) Comparative study on mesh-based and mesh-less coupled CFD-DEM methods to model particle-laden flow. Powder Technol 305:78-88 otwiera się w nowej karcie
  35. Mas Ivars D, Pierce ME, Darcel C, Reyes-Montes J, Potyondy DO, Young RP, Cundall PA (2011) The synthetic rock mass approach for jointed rock mass modelling. Int J Rock Mech Min Sci 48(2):219-244
  36. Nitka M, Tejchman J (2015) Modelling of concrete behaviour in uniaxial compression and tension with DEM. Granul Matter 17(1):145-164 otwiera się w nowej karcie
  37. Nitka M, Tejchman J (2018) A three-dimensional meso scale approach to concrete fracture based on combined DEM with X-ray lCT images. Cem Concr Res 107:11-29 otwiera się w nowej karcie
  38. Nitka M, Tejchman J, Kozicki J, Leśniewska D (2015) DEM analysis of micro-structural within granular zones under passive earth pressure conditions. Granul Matter 17:325-343 otwiera się w nowej karcie
  39. Norris JQ, Turcotte DL, Moores EM, Brodsky EE, Rundle JB (2016) Fracking in tight shales: What is it, what does it accom- plish, and what are its consequences? Annu Rev Earth Planet Sci 44(1):321-351 otwiera się w nowej karcie
  40. Papachristos E, Scholtès L, Donzé FV, Chareyre B (2017) Intensity and volumetric characterizations of hydraulically driven fractures by hydro-mechanical simulations. Int J Rock Mech Min Sci 93:163-178 otwiera się w nowej karcie
  41. Papanastasiou P (1999) The effective fracture toughness in hydraulic fracturing. Int J Fract 96(2):127-147 otwiera się w nowej karcie
  42. Pfenninger W (1961) In boundary layer suction experiments with laminar flow at high Reynolds numbers in the inlet length of a tube by various suction methods. In: Lachman GV (ed) Boundary layer and flow control. Pergamon Press, Oxford, pp 961-980 otwiera się w nowej karcie
  43. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329-1364 otwiera się w nowej karcie
  44. Robinson M, Ramaioli M, Luding S (2014) Fluid-particle flow simulations using two-way-coupled mesoscale SPH-DEM and validation. Int J Multiph Flow 59:121-134 otwiera się w nowej karcie
  45. Scholtès L, Donzé F (2012) Modelling progressive failure in fractured rock masses using a 3D discrete element method. Int J Rock Mech Min Sci 52:18-30 otwiera się w nowej karcie
  46. Shan T, Zhao J (2014) A coupled CFD-DEM analysis of granular flow impacting on a water reservoir. Acta Mech 225:2449-2470 otwiera się w nowej karcie
  47. Shimizu H, Murata S, Ishida T (2011) The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution. Int J Rock Mech Min Sci 48:712-727 otwiera się w nowej karcie
  48. Skar_ zyński L, Nitka M, Tejchman J (2015) Modelling of concrete fracture at aggregate level using FEM and DEM based on x-ray lCT images of internal structure. Eng Fract Mech 10(147):13-35 otwiera się w nowej karcie
  49. Š milauer V, Chareyre B (2011) Yade DEM formulation. Manual 50. Suchorzewski J, Tejchman J, Nitka M (2018) Discrete element method simulations of fracture in concrete under uniaxial com- pression based on its real internal structure. Int J Damage Mech 27(4):578-607
  50. Suchorzewski J, Tejchman J, Nitka M (2018) Experimental and numerical investigations of concrete behaviour at meso-level during quasi-static splitting tension. Theoret Appl Fract Mech 96:720-739 otwiera się w nowej karcie
  51. Suchorzewski J, Tejchman J, Nitka M, Bobinski J (2019) Meso- scale analyses of size effect in brittle materials using DEM. Granul Matter 21(9):1-19 otwiera się w nowej karcie
  52. Sun X, Sakai M, Yamada Y (2013) Three-dimensional simulation of a solid-liquid flow by the DEM-SPH method. J Comput Phys 248:147-176 otwiera się w nowej karcie
  53. Tomac I, Gutierrez M (2017) Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM. J Rock Mech Geotech Eng 9(2017):92-104 otwiera się w nowej karcie
  54. Tong ZB, Zheng B, Yang RY, Yu AB, Chan HK (2013) CFD- DEM investigation of the dispersion mechanisms in commercial dry powder inhalers. Powder Technol 240:19-24 otwiera się w nowej karcie
  55. Warpinski NR, Kramm RC, Heinze JR, Waltman CK (2005) Comparison of single-and dualarray microseismic mapping techniques in the Barnett shale. In: Paper SPE 95568, SPE annual technical conference and exhibition, Dallas, pp 9-12 otwiera się w nowej karcie
  56. Wheeler MF, Wick T, Wollner W (2014) An augmented-la- grangian method for the phasefield approach for pressurized fractures. Comput Methods Appl Mech Eng 271:69-85 otwiera się w nowej karcie
  57. Wiese J, Wissing F, Höhner D, Wirtz S, Scherer V, Ley U et al (2016) DEM/CFD modeling of the fuel conversion in a pellet stove. Fuel Process Technol 152:223-239 otwiera się w nowej karcie
  58. Wissing F, Wirtz S, Scherer V (2017) Simulating municipal solid waste incineration with a DEM/CFD method-Influences of waste properties, grate and furnace design. Fuel 206:638-656 otwiera się w nowej karcie
  59. Yoon JS, Zang A, Stephansson O (2014) Numerical investigation on optimized stimulation of intact and naturally fractured deep geothermal reservoirs using hydro-mechanical coupled discrete particles joints model. Geothermics 52:165-184 otwiera się w nowej karcie
  60. Zhang Z, Li X, Yuan W, He J, Li G, Wu Y (2015) Numerical analysis on the optimization of hydraulic fracture networks. Energies 8(10):12061-12079 otwiera się w nowej karcie
  61. Zhao JD, Shan T (2013) Coupled CFD-DEM simulation of fluid- particle interaction in geomechanics. Powder Technol 239:248-258 otwiera się w nowej karcie
  62. Zhou F, Hub S, Liub Y, Liub C, Xi T (2014) CFD-DEM simu- lation of the pneumatic conveying of fine particles through a horizontal slit. Particuology 16:196-205 otwiera się w nowej karcie
  63. Zoback M (2007) Reservoir geomechanics. Cambridge Univer- sity Press, Cambridge
Źródła finansowania:
  • The research works have been carried out within the project: ‘Modelling of hydro-fracking in shales’ financed by the National Centre for Research and Development (NCBR) as part of the program BLUE GAS—POLISH SHALE GAS. Contract No. BG1/ MWSSSG/13 and within the project ‘Fracture propagation in rocks coupled with fluid flow and heat transport’ financed by the National Science Centre (NCN) (UMO-2018/29/B/ST8/00255).
Weryfikacja:
Politechnika Gdańska

wyświetlono 129 razy

Publikacje, które mogą cię zainteresować

Meta Tagi