Simultaneous determination of individual isothiocyanates in plant samples by HPLC-DAD-MS following SPE and derivatization with N-acetyl-l-cysteine - Publikacja - MOST Wiedzy

Wyszukiwarka

Simultaneous determination of individual isothiocyanates in plant samples by HPLC-DAD-MS following SPE and derivatization with N-acetyl-l-cysteine

Abstrakt

The procedure for the isothiocyanates (ITCs) determination that involves derivatization with N-acetyl-l-cysteine (NAC) and separation by HPLC was developed. Prior to derivatization, plant ITCs were isolated and purified using solid-phase extraction (SPE). The optimum conditions of derivatization are: 500 μL of isopropanolic eluate obtained by SPE combined with 500 μL of derivatizing reagent (0.2 M NAC and 0.2 M NaHCO3 in water) and reaction time of 1 h at 50 °C. The formed dithiocarbamates are directly analyzed by HPLC coupled with diode array detector and mass spectrometer if required. The method was validated for nine common natural ITCs. Calibration curves were linear (R2 ⩾ 0.991) within a wide range of concentrations and limits of detection were below 4.9 nmol/mL. The recoveries were in the range of 83.3–103.7%, with relative standard deviations <5.4%. The developed method has been successfully applied to determine ITCs in broccoli, white cabbage, garden cress, radish, horseradish and papaya.

Cytowania

  • 2 1

    CrossRef

  • 0

    Web of Science

  • 2 0

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 810 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
FOOD CHEMISTRY nr 214, strony 587 - 596,
ISSN: 0308-8146
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Pilipczuk T., Kusznierewicz B., Chmiel T., Przychodzeń W., Bartoszek-Pączkowska A.: Simultaneous determination of individual isothiocyanates in plant samples by HPLC-DAD-MS following SPE and derivatization with N-acetyl-l-cysteine// FOOD CHEMISTRY. -Vol. 214, (2017), s.587-596
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.foodchem.2016.07.125
Bibliografia: test
  1. Agerbirk, N., De Nicola, G. R., Olsen, C. E., Müller, C., & Iori, R. (2015). Derivatization of isothiocyanates and their reactive adducts for chromatographic analysis. Phytochemistry, 118, 109-115. http://dx.doi.org/10.1016/j.phytochem.2015. 06.004. otwiera się w nowej karcie
  2. Aires, A., Mota, V. R., Saavedra, M. J., Monteiro, A. A., Simões, M., Rosa, E. A. S., & Bennett, R. N. (2009). Initial in vitro evaluations of the antibacterial activities of glucosinolate enzymatic hydrolysis products against plant pathogenic bacteria. Journal of Applied Microbiology, 106(6), 2096-2105. http://dx.doi.org/10.1111/ j.1365-2672.2009.04181.x. otwiera się w nowej karcie
  3. Aissani, N., Tedeschi, P., Maietti, A., Brandolini, V., Garau, V. L., & Caboni, P. (2013). Nematicidal activity of allylisothiocyanate from horseradish (Armoracia rusticana) roots against Meloidogyne incognita. Journal of Agricultural and Food Chemistry, 61(20), 4723-4727. http://dx.doi.org/10.1021/jf4008949. otwiera się w nowej karcie
  4. Barillari, J., Iori, R., Broccoli, M., Pozzetti, L., Canistro, D., Sapone, A., ...
  5. Paolini, M. (2007). Glucoraphasatin and glucoraphenin, a redox pair of glucosinolates of brassicaceae, differently affect metabolizing enzymes in rats. Journal of Agricultural and Food Chemistry, 55(14), 5505-5511. http://dx.doi.org/10.1021/ jf070558r. otwiera się w nowej karcie
  6. Bhat, V., Allan, K. M., & Rawal, V. H. (2011). Total synthesis of N-methylwelwitindolinone D isonitrile. Journal of the American Chemical Society, 133(15), 5798-5801. http://dx.doi.org/10.1021/Ja201834u. otwiera się w nowej karcie
  7. Budnowski, J., Hanschen, F. S., Lehmann, C., Haack, M., Brigelius-Flohé, R., Kroh, L. W., ... Hanske, L. (2013). A derivatization method for the simultaneous detection of glucosinolates and isothiocyanates in biological samples. Analytical Biochemistry, 441(2), 199-207. http://dx.doi.org/10.1016/j.ab.2013.07.002. otwiera się w nowej karcie
  8. Chen, C., & Ho, C. (1998). Thermal degradation of allyl isothiocyanate in aqueous solution. Journal of Agricultural and Food Chemistry, 46(1), 220-223. otwiera się w nowej karcie
  9. Chiang, W. C. K., Pusateri, D. J., & Leitz, R. E. (1998). Gas chromatography/mass spectrometry method for the determination of sulforaphane and sulforaphane nitrile in broccoli. Journal of Agricultural and Food Chemistry, 46(97), 1018-1021. http://dx.doi.org/10.1021/jf970572b. otwiera się w nowej karcie
  10. Chmiel, T., Abogado, D., & Wardencki, W. (2014). Optimization of capillary isotachophoretic method for determination of major macroelements in blue honeysuckle berries (Lonicera caerulea L.) and related products. Analytical and Bioanalytical Chemistry, 406(20), 4965-4986. http://dx.doi.org/10.1007/s00216- 014-7879-4. otwiera się w nowej karcie
  11. Gupta, P., Wright, S. E., Kim, S. H., & Srivastava, S. K. (2014). Phenethyl isothiocyanate: A comprehensive review of anti-cancer mechanisms. Biochimica et Biophysica Acta -Reviews on Cancer, 1846(2), 405-424. http://dx. doi.org/10.1016/j.bbcan.2014.08.003. otwiera się w nowej karcie
  12. Hanschen, F. S., Platz, S., Mewis, I., Schreiner, M., Rohn, S., & Kroh, L. W. (2012). Thermally induced degradation of sulfur-containing aliphatic glucosinolates in broccoli sprouts (Brassica oleracea var. Italica) and model systems. Journal of Agricultural and Food Chemistry, 60(9), 2231-2241. http://dx.doi.org/10.1021/ jf204830p. otwiera się w nowej karcie
  13. Higdon, J. V., Delage, B., Williams, D. E., & Dashwood, R. H. (2009). Cruciferous vegetables and human cancer risk: Epidemiologic evidence and mechanistic basis. Pharmacological Research, 55(3), 224-236. http://dx.doi.org/10.1016/j. phrs.2007.01.009.Cruciferous. otwiera się w nowej karcie
  14. Janobi, A. A., Al Mithen, R. F., Gasper, A. V., Shaw, P. N., Middleton, R. J., Ortori, C. A., & Barrett, D. A. (2006). Quantitative measurement of sulforaphane, iberin and their mercapturic acid pathway metabolites in human plasma and urine using liquid chromatography-tandem electrospray ionisation mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 844(2), 223-234. http://dx.doi.org/10.1016/j.jchromb.2006.07.007. otwiera się w nowej karcie
  15. Jones, R. B., Frisina, C. L., Winkler, S., Imsic, M., & Tomkins, R. B. (2010). Cooking method significantly effects glucosinolate content and sulforaphane production otwiera się w nowej karcie
  16. Fig. 4. The correlation between total ITC contents determined as ITC-NAC conju- gates and as BDTT for individual plant extracts. Pearson correlation coefficient is r = 0.996. in broccoli florets. Food Chemistry, 123(2), 237-242. http://dx.doi.org/10.1016/ j.foodchem.2010.04.016. otwiera się w nowej karcie
  17. Kusznierewicz, B., Bą czek-Kwinta, R., Bartoszek, A., Piekarska, A., Huk, A., Manikowska, A., ... Konieczka, P. (2012). The dose-dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica oleracea var. capitata f. alba). Environmental Toxicology and Chemistry, 31(11), 2482-2489. http://dx.doi.org/10.1002/ etc.1977. otwiera się w nowej karcie
  18. Kusznierewicz, B., Bartoszek, A., Wolska, L., Drzewiecki, J., Gorinstein, S., & Namieśnik, J. (2008). Partial characterization of white cabbages (Brassica oleracea var. capitata f. alba) from different regions by glucosinolates, bioactive compounds, total antioxidant activities and proteins. LWT -Food Science and Technology, 41(1), 1-9. http://dx.doi.org/10.1016/j.lwt.2007.02.007. otwiera się w nowej karcie
  19. Lai, K.-C., Huang, A.-C., Hsu, S.-C., Kuo, C.-L., Yang, J.-S., Wu, S.-H., & Chung, J.-G. (2010). Benzyl isothiocyanate (BITC) inhibits migration and invasion of human colon cancer HT29 cells by inhibiting matrix metalloproteinase-2/-9 and urokinase plasminogen (uPA) through PKC and MAPK signaling pathway. Journal of Agricultural and Food Chemistry, 58, 2935-2942. http://dx.doi.org/ 10.1021/jf9036694. otwiera się w nowej karcie
  20. Li, N., Tu, M. S., Jiang, B., Wang, X., & Tu, S. J. (2013). Domino [3+2+1] heterocyclization of isothiocyanates with aryl amidines leading to polysubstituted 1,3,5-triazine derivatives. Tetrahedron Letters, 54(13), 1743-1746. http://dx.doi.org/10.1016/j.tetlet.2013.01.086. otwiera się w nowej karcie
  21. Mathiselvam, M., Loganathan, D., & Varghese, B. (2013). Synthesis and characterization of thiourea-and urea-linked glycolipids as low-molecular- weight hydrogelators. RSC Advances, 3(34), 14528. http://dx.doi.org/10.1039/ c3ra42041h. otwiera się w nowej karcie
  22. Matich, A. J., McKenzie, M. J., Lill, R. E., Brummell, D. A., McGhie, T. K., Chen, R. K. Y., & Rowan, D. D. (2012). Selenoglucosinolates and their metabolites produced in Brassica spp. fertilised with sodium selenate. Phytochemistry, 75, 140-152. http://dx.doi.org/10.1016/j.phytochem.2011.11.021. otwiera się w nowej karcie
  23. Matusheski, N. V., Swarup, R., Juvik, J. A., Mithen, R., Bennett, M., & Jeffery, E. H. (2006). Epithiospecifier protein from broccoli (Brassica oleracea L. ssp. italica) inhibits formation of the anticancer agent sulforaphane. Journal of Agricultural and Food Chemistry, 54(6), 2069-2076. http://dx.doi.org/10.1021/jf0525277. otwiera się w nowej karcie
  24. Mithen, R. F., Armah, C., & Traka, M. (2011). Vegetables, whole grains, and their derivatives in cancer prevention. In Cancer (pp. 1-30). http://dx.doi.org/10. 1007/978-90-481-9800-9. otwiera się w nowej karcie
  25. Montaut, S., Barillari, J., Iori, R., & Rollin, P. (2010). Glucoraphasatin: Chemistry, occurrence, and biological properties. Phytochemistry, 71(1), 6-12. http://dx.doi. org/10.1016/j.phytochem.2009.09.021. otwiera się w nowej karcie
  26. Navarro, S. L., Li, F., & Lampe, J. W. (2011). Mechanisms of action of isothiocyanates in cancer chemoprevention: An update. Food & Function, 2(10), 579-587. http:// dx.doi.org/10.1039/c1fo10114e. otwiera się w nowej karcie
  27. Oliviero, T., Verkerk, R., Vermeulen, M., & Dekker, M. (2014). In vivo formation and bioavailability of isothiocyanates from glucosinolates in broccoli as affected by processing conditions. Molecular Nutrition and Food Research, 58(7), 1447-1456. http://dx.doi.org/10.1002/mnfr.201300894. otwiera się w nowej karcie
  28. Pandurangan, K., Kitchen, J. A., McCabe, T., & Gunnlaugsson, T. (2013). Hydrogen bonding interactions and supramolecular networks of pyridine-aryl based thiosemicarbazides and their Zn(II) complexes. CrystEngComm, 15(7), 1421. http://dx.doi.org/10.1039/c2ce26718g. otwiera się w nowej karcie
  29. Piekarska, A., Kołodziejski, D., Pilipczuk, T., Bodnar, M., Konieczka, P., Kusznierewicz, B., ... Bartoszek, A. (2014). The influence of selenium addition during germination of Brassica seeds on health-promoting potential of sprouts. International Journal of Food Sciences and Nutrition, 65(6), 692-702. http://dx. doi.org/10.3109/09637486.2014.917148. otwiera się w nowej karcie
  30. Pilipczuk, T., Dawidowska, N., Kusznierewicz, B., Namieśnik, J., & Bartoszek, A. (2015). Simultaneous determination of indolic compounds in plant extracts by solid-phase extraction and high-performance liquid chromatography with UV and fluorescence detection. Food Analytical Methods, 8(9), 2169-2177. http://dx. doi.org/10.1007/s12161-015-0106-x. otwiera się w nowej karcie
  31. Pilipczuk, T., Piekarska, A., Kusznierewicz, B., Bartoszek, A., & Namieśnik, J. (2013). Biofumigacja jako przyjazna środowisku technologia ochrony roślin. Analityka Nauka i Praktyka, 1, 36-46.
  32. Psurski, M., Piguła, M., Ciekot, J., Winiarski, Ł., Wietrzyk, J., & Oleksyszyn, J. (2012). Convenient syntheses of novel 1-isothiocyano-alkylphosphonate diphenyl ester derivatives with potential biological activity. Tetrahedron Letters, 53(44), 5845-5847. http://dx.doi.org/10.1016/j.tetlet.2012.08.037. otwiera się w nowej karcie
  33. Rungapamestry, V., Duncan, A. J., Fuller, Z., & Ratcliffe, B. (2006). Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea var. capitata) cooked for different durations. Journal of Agricultural and Food Chemistry, 54 (20), 7628-7634. http://dx.doi.org/10.1021/jf0607314. otwiera się w nowej karcie
  34. Shapiro, T. A., Fahey, J. W., Wade, K. L., Stephenson, K. K., & Talalay, P. (2001). Chemoprotective glucosinolates and ssothiocyanates of broccoli sprouts. Cancer Epidimiology Biomarkers & Prevention, 10(5), 501-508. otwiera się w nowej karcie
  35. Smith, C. D., Baxendale, I. R., Tranmer, G. K., Baumann, M., Smith, S. C., Lewthwaite, R. A., & Ley, S. V. (2007). Tagged phosphine reagents to assist reaction work-up by phase-switched scavenging using a modular flow reactor. Organic & Biomolecular Chemistry, 5(10), 1562-1568. http://dx.doi.org/10.1039/b703033a. otwiera się w nowej karcie
  36. Trott, D., Lepage, J., & Hebert, V. R. (2012). Assessing natural isothiocyanate air emissions after field incorporation of mustard cover crop. Bulletin of Environmental Contamination and Toxicology, 88(3), 482-485. http://dx.doi.org/ 10.1007/s00128-011-0506-6. otwiera się w nowej karcie
  37. Vermeulen, M., Zwanenburg, B., Chittenden, G. J. F., & Verhagen, H. (2003). Synthesis of isothiocyanate-derived mercapturic acids. European Journal of Medicinal Chemistry, 38(7-8), 729-737. http://dx.doi.org/10.1016/S0223-5234 (03)00141-7. otwiera się w nowej karcie
  38. Wesseling, C., McConnell, R., Partanen, T., & Hogstedt, C. (1997). Agricultural pesticide use in developing countries: Health effects and research needs. International Journal of Health Services, 27, 273-308. otwiera się w nowej karcie
  39. Wilson, E. A., Ennahar, S., Zhao, M., Bergaentzle, M., Marchioni, E., & Bindler, F. (2011). Simultaneous determination of various isothiocyanates by RP-LC following precolumn derivatization with mercaptoethanol. Chromatographia, 73(SUPPL. 1). http://dx.doi.org/10.1007/s10337-010-1878-1. otwiera się w nowej karcie
  40. Wittstock, U., & Burow, M. (2007). Tipping the scales -specifier proteins in glucosinolate hydrolysis. IUBMB Life, 59(12), 744-751. http://dx.doi.org/ 10.1080/15216540701736277. otwiera się w nowej karcie
  41. Xian, L., & Kushad, M. M. (2004). Correlation of glucosinolate content to myrosinase activity in horseradish (Armoracia rusticana). Journal of Agricultural and Food Chemistry, 52(23), 6950-6955. http://dx.doi.org/10.1021/jf0401827. otwiera się w nowej karcie
  42. Zhang, Y. S., Kolm, R. H., Mannervik, B., & Talalay, P. (1995). Reversible conjugation of isothiocyanates with glutathione catalyzed by human glutathione transferases. Biochemical and Biophysical Research Communications, 206(2), 748-755. http://dx.doi.org/10.1006/bbrc.1995.1106. otwiera się w nowej karcie
  43. Zhang, Y., Wade, K. L., Prestera, T., & Talalay, P. (1996). Quantitative determination of isothiocyanates, dithiocarbamates, carbon disulfide, and related thiocarbonyl compounds by cyclocondensation with 1,2-benzenedithiol. Analytical Biochemistry, 239(2), 160-167. http://dx.doi.org/10.1006/abio.1996.0311. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 159 razy

Publikacje, które mogą cię zainteresować

Meta Tagi