Simultaneous Determination of Indolic Compounds in Plant Extracts by Solid-Phase Extraction and High-Performance Liquid Chromatography with UV and Fluorescence Detection - Publikacja - MOST Wiedzy

Wyszukiwarka

Simultaneous Determination of Indolic Compounds in Plant Extracts by Solid-Phase Extraction and High-Performance Liquid Chromatography with UV and Fluorescence Detection

Abstrakt

A high-performance liquid chromatographic method with UV and fluorescence detection (HPLC-DAD-FLD) was developed for simultaneous determination of indolic compounds in plant material. Indole-3-carbinol (I3C), indole-3-acetic acid (I3AA), indole-3-acetonitrile (I3ACN), and 3,3′-diindolylmethane (DIM) were used as representative compounds that cover a wide spectrum of indole structures occurring in nature. For concentration and purification of the analytes, a solid-phase extraction (SPE) pretreatment was used. The separation utilized a Zorbax XDB-C8 reversed-phase column, acetonitrile-water containing 0.01 % formic acid gradient and UV (280 nm) in series with fluorescence (ex. 280 nm; em. 360 nm) detection. Good linearities of calibration curves were found within the ranges of 0.1–100 nmol/mL for I3C and DIM, 0.4–100 nmol/mL for I3AA and I3ACN for UV detection and 0.003–10 nmol/mL for I3C, 0.003–5 nmol/mL for DIM, and 0.02–10 nmol/mL for I3AA and I3ACN for fluorescence detection. The lowest detection limits (LOD) for UV detection were 0.03 nmol/mL for I3C, 0.1 nmol/mL for I3AA and I3ACN, and 0.04 nmol/mL for DIM, while for fluorescence detection were 0.001 nmol/mL for I3C and DIM, and 0.006 nmol/mL for I3AA and I3ACN. The usefulness of HPLC-DAD-FLD method with SPE pretreatment is illustrated by the analysis of indolic compounds in extracts from different parts of Brassica vegetables.

Cytowania

  • 1 2

    CrossRef

  • 1 4

    Web of Science

  • 1 4

    Scopus

Pełna treść

pobierz publikację
pobrano 108 razy

Licencja

Copyright (Springer Science+Business Media New York 2015)

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Food Analytical Methods nr 8, wydanie 9, strony 2169 - 2177,
ISSN: 1936-9751
Rok wydania:
2015
Opis bibliograficzny:
Pilipczuk T., Dawidowska N., Kusznierewicz B., Namieśnik J., Bartoszek-Pączkowska A.: Simultaneous Determination of Indolic Compounds in Plant Extracts by Solid-Phase Extraction and High-Performance Liquid Chromatography with UV and Fluorescence Detection// Food Analytical Methods. -Vol. 8, iss. 9 (2015), s.2169-2177
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s12161-015-0106-x
Bibliografia: test
  1. Acharya A, Das I, Singh S, Saha T (2010) Chemopreventive properties of indole-3-carbinol, diindolylmethane and other constituents of carda- mom against carcinogenesis. Recent Pat Food Nutr Agric 2:166- 177 otwiera się w nowej karcie
  2. Agerbirk N, Petersen BL, Olsen CE, Halkier BA, Nielsen JK (2001) 1,4- Dimethoxyglucobrassicin in Barbarea and 4-hydroxyglucobrassicin in Arabidopsis and Brassica. J Agric Food Chem 49:1502-1507. doi:10.1021/Jf001256r otwiera się w nowej karcie
  3. Anderton MJ, Jukes R, Lamb JH, Manson MM, Gescher A, Steward WP, Williams ML (2003) Liquid chromatographic assay for the simulta- neous determination of indole-3-carbinol and its acid condensation products in plasma. J Chromatogr B Analyt Technol Biomed Life Sci 787:281-291 otwiera się w nowej karcie
  4. Aires A, Mota VR, Saavedra MJ, Rosa EA, Bennett RN (2009) The antimicrobial effects of glucosinolates and their respective enzymat- ic hydrolysis products on bacteria isolated from the human intestinal tract. J Appl Microbiol 106:2086-2095. doi:10.1111/j.1365-2672. 2009.04180.x otwiera się w nowej karcie
  5. Bai Y, Zhang J, Bai Y, Liu H (2012) Direct analysis in real time mass spectrometry combined with single-drop liquid-liquid-liquid microextraction for the rapid analysis of multiple phytohormones in fruit juice. Anal Bioanal Chem 403:2307-2314. doi:10.1007/ s00216-012-5728-x otwiera się w nowej karcie
  6. Barkawi LS et al (2008) A high-throughput method for the quantitative analysis of indole-3-acetic acid and other auxins from plant tissue. Anal Biochem 372:177-188. doi:10.1016/j.ab.2007.08.009 otwiera się w nowej karcie
  7. Borsarelli CD, Bertolotti SG, Previtali CM (2001) Exciplex-type behav- ior and partition of 3-substituted indole derivatives in reverse mi- celles made with benzylhexadecyldimethylammonium chloride, wa- ter and benzene. Photochem Photobiol 73:97-104 otwiera się w nowej karcie
  8. Bradlow HL, Zeligs MA (2010) Diindolylmethane (DIM) spontaneously forms from indole-3-carbinol (I3C) during cell culture experiments. In Vivo 24:387-391
  9. Callis PR (1997) L-1(a) and L-1(b) transitions of tryptophan: applications of theory and experimental observations to fluorescence of proteins. Method Enzymol 278:113-150 otwiera się w nowej karcie
  10. Ciska E, Verkerk R, Honke J (2009) Effect of boiling on the content of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3′- diindolylmethane in fermented cabbage. J Agric Food Chem 57: 2334-2338. doi:10.1021/jf803477w otwiera się w nowej karcie
  11. De Vos M, Kriksunov KL, Jander G (2008) Indole-3-acetonitrile produc- tion from indole glucosinolates deters oviposition by Pieris rapae. Plant Physiol 146:916-926. doi:10.1104/Pp.107.112185 otwiera się w nowej karcie
  12. Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gomez- Cadenas A (2005) Simultaneous determination of multiple phyto- hormones in plant extracts by liquid chromatography-electrospray tandem mass spectrometry. J Agric Food Chem 53:8437-8442. doi: 10.1021/Jf050884b otwiera się w nowej karcie
  13. He H (1999) Studies for growth adaptation and identification of gluco- sinolates on Chinese brassicas. Herbert Utz Verlag Wissenschaft, Munchen
  14. Hou S, Zhu J, Ding M, Lv G (2008) Simultaneous determination of gibberellic acid, indole-3-acetic acid and abscisic acid in wheat ex- tracts by solid-phase extraction and liquid chromatography- electrospray tandem mass spectrometry. Talanta 76:798-802. doi: 10.1016/j.talanta.2008.04.041 otwiera się w nowej karcie
  15. Kim EK, Kim YS, Milner JA, Wang TT (2013) Indole-3-carbinol and 3′, 3′-diindolylmethane modulate androgen's effect on C-C chemokine ligand 2 and monocyte attraction to prostate cancer cells. Cancer Prev Res (Phila) 6:519-529. doi:10.1158/1940-6207.CAPR-12- 0419 otwiera się w nowej karcie
  16. Kim SJ, Ishii G (2006) Glucosinolate profiles in the seeds, leaves and roots of rocket salad (Eruca sativa Mill.) and anti-oxidative activities of intact plant powder and purified 4-methoxyglucobrassicin. Soil Sci Plant Nutr 52:394-400. doi:10.1111/J.1747-0765.2006.00049.X otwiera się w nowej karcie
  17. Kim SY, Kim MK, Kwon SB, Na JI, Park KC, Kim DS (2009) Tumor apoptosis by indole-3-acetic acid/light in B16F10 melanoma- implanted nude mice. Arch Dermatol Res 301:319-322. doi:10. 1007/s00403-009-0938-6 otwiera się w nowej karcie
  18. Kobayashi M, Izui H, Nagasawa T, Yamada H (1993) Nitrilase in bio- synthesis of the plant hormone indole-3-acetic-acid from indole-3- acetonitrile-cloning of the alcaligenes gene and site-directed mu- tagenesis of cysteine residues. Proc Natl Acad Sci U S A 90:247- 251. doi:10.1073/Pnas.90.1.247 otwiera się w nowej karcie
  19. Kirkegaard JA, Sarwar M (1998) Biofumigation potential of Brassicas. Plant Soil 201:71-89. doi:10.1023/A:1004364713152 otwiera się w nowej karcie
  20. Kowalczyk M, Sandberg G (2001) Quantitative analysis of indole-3- acetic acid metabolites in Arabidopsis. Plant Physiol 127:1845- 1853. doi:10.1104/Pp.010525 otwiera się w nowej karcie
  21. Lee SY, Chu SM, Lee SM, Kim HJ, Cho HS, Yu CY, Kim JK (2010) Determination of indole-3-carbinol and indole-3-acetonitrile in Brassica vegetables using high-performance liquid chromatography with fluorescence detection. J Korean Soc Appl Biol Chem 53:249- 252. doi:10.3839/Jksabc.2010.039 otwiera się w nowej karcie
  22. Liu BF, Zhong XH, Lu YT (2002) Analysis of plant hormones in tobacco flowers by micellar electrokinetic capillary chromatography coupled with on-line large volume sample stacking. J Chromatogr A 945: 257-265. doi:10.1016/S0021-9673(01)01503-5 otwiera się w nowej karcie
  23. Liu X, Hegeman AD, Gardner G, Cohen JD (2012) Protocol: high- throughput and quantitative assays of auxin and auxin precursors from minute tissue samples. Plant Methods 8:31. doi:10.1186/ 1746-4811-8-31 otwiera się w nowej karcie
  24. Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. J Exp Bot 63:2853-2872. doi:10.1093/Jxb/Ers091 otwiera się w nowej karcie
  25. Maruthanila VL, Poornima J, Mirunalini S (2014) Attenuation of carci- nogenesis and the mechanism underlying by the influence of indole- 3-carbinol and its metabolite 3,3′-diindolylmethane: a therapeutic marvel. Adv Pharmacol Sci 2014:832161. doi:10.1155/2014/ 832161 otwiera się w nowej karcie
  26. Mashiguchi K et al (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci U S A 108:18512-18517. doi:10. 1073/pnas.1108434108 otwiera się w nowej karcie
  27. Monte J, Abreu AC, Borges A, Simoes LC, Simoes M (2014) Antimicrobial activity of selected phytochemicals against Escherichia coli and Staphylococcus aureus and their biofilms. Pathogens 3:473-498. doi:10.3390/pathogens3020473 otwiera się w nowej karcie
  28. Neave AS, Sarup SM, Seidelin M, Duus F, Vang O (2005) Characterization of the N-methoxyindole-3-carbinol (NI3C)-in- duced cell cycle arrest in human colon cancer cell lines. Toxicol Sci 83:126-135. doi:10.1093/toxsci/kfi008 otwiera się w nowej karcie
  29. Ouyang J, Shao X, Li J (2000) Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana. Plant J 24:327-333 otwiera się w nowej karcie
  30. Pedras MS, Hossain S (2011) Interaction of cruciferous phytoanticipins with plant fungal pathogens: indole glucosinolates are not metabolized but the corresponding desulfo-derivatives and nitriles are. Phytochemistry 72:2308-2316. doi:10.1016/J.Phytochem.2011.08.018 otwiera się w nowej karcie
  31. Pencik A et al (2009) Isolation of novel indole-3-acetic acid conjugates by immunoaffinity extraction. Talanta 80:651-655. doi:10.1016/j. talanta.2009.07.043 otwiera się w nowej karcie
  32. Rosa EAS (1997) Daily variation in glucosinolate concentrations in the leaves and roots of cabbage seedlings in two constant temperaure regimes. J Sci Food Agric 73:364-368. doi:10.1002/(SICI)1097- 0010(199703)73:3<364::AID-JSFA742>3.0.CO;2-O otwiera się w nowej karcie
  33. Schmelz EA, Engelberth J, Alborn HT, O'Donnell P, Sammons M, Toshima H, Tumlinson JH 3rd (2003) Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc Natl Acad Sci U S A 100:10552-10557. doi:10.1073/ pnas.1633615100 otwiera się w nowej karcie
  34. Shertzer HG, Niemi MP, Tabor MW (1986) Indole-3-carbinol inhibits lipid peroxidation in cell-free systems. Adv Exp Med Biol 197: 347-356 otwiera się w nowej karcie
  35. Sitbon F, Astot C, Edlund A, Crozier A, Sandberg G (2000) The relative importance of tryptophan-dependent and tryptophan-independent biosynthesis of indole-3-acetic acid in tobacco during vegetative growth. Planta 211:715-721. doi:10.1007/S004250000338 otwiera się w nowej karcie
  36. Sugawara S et al (2009) Biochemical analyses of indole-3-acetaldoxime- dependent auxin biosynthesis in Arabidopsis. Proc Natl Acad Sci U S A 106:5430-5435. doi:10.1073/pnas.0811226106 otwiera się w nowej karcie
  37. Sung WS, Lee DG (2007a) The candidacidal activity of indole-3-carbinol that binds with DNA. IUBMB Life 59:408-412. doi:10.1080/ 15216540701422373 otwiera się w nowej karcie
  38. Sung WS, Lee DG (2007b) In vitro antimicrobial activity and the mode of action of indole-3-carbinol against human pathogenic microorgan- isms. Biol Pharm Bull 30:1865-1869 otwiera się w nowej karcie
  39. Szkop M, Bielawski W (2013) A simple method for simultaneous RP- HPLC determination of indolic compounds related to bacterial bio- synthesis of indole-3-acetic acid. Antonie Van Leeuwenhoek 103: 683-691. doi:10.1007/s10482-012-9838-4 otwiera się w nowej karcie
  40. Wang X et al (2015) Indole-3-carbinol inhibits tumorigenicity of hepatocellular carcinoma cells via suppression of microRNA- 21 and upregulation of phosphatase and tensin homolog. Biochim Biophys Acta 1853:244-253. doi:10.1016/j.bbamcr. 2014.10.017 otwiera się w nowej karcie
  41. Wang YQ et al (2013) Indole-3-carbinol inhibits cell proliferation and induces apoptosis in Hep-2 laryngeal cancer cells. Oncol Rep 30: 227-233. doi:10.3892/or.2013.2411 otwiera się w nowej karcie
  42. West LG, Meyer KA, Balch BA, Rossi FJ, Schultz MR, Haas GW (2004) Glucoraphanin and 4-hydroxyglucobrassicin contents in seeds of 59 cultivars of broccoli, raab, kohlrabi, radish, cauliflower, brussels sprouts, kale, and cabbage. J Agric Food Chem 52:916-926. doi: 10.1021/Jf0307189 otwiera się w nowej karcie
  43. Zhang R, Wang B, Jian OY, Li JY, Wang YH (2008) Arabidopsis indole synthase, a homolog of tryptophan synthase alpha, is an enzyme involved in the Trp-independent indole-containing metabolite bio- synthesis. J Integr Plant Biol 50:1070-1077. doi:10.1111/J.1744- 7909.2008.00729.X otwiera się w nowej karcie
  44. Zhang WW, Feng Z, Narod SA (2014) Multiple therapeutic and preven- tive effects of 3,3′-diindolylmethane on cancers including prostate cancer and high grade prostatic intraepithelial neoplasia. J Biomed Res 28:339-348. doi:10.7555/JBR.28.20140008 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 26 razy

Publikacje, które mogą cię zainteresować

Meta Tagi