Size-Controlled Synthesis of Pt Particles on TiO2 Surface: Physicochemical Characteristic and Photocatalytic Activity - Publikacja - MOST Wiedzy


Size-Controlled Synthesis of Pt Particles on TiO2 Surface: Physicochemical Characteristic and Photocatalytic Activity


Different TiO2 photocatalysts, i.e., commercial samples (ST‐01 and P25 with minority of rutile phase), nanotubes, well‐crystallized faceted particles of decahedral shape and mesoporous spheres, were used as supports for deposition of Pt nanoparticles (NPs). Size‐controlled Pt NPs embedded in TiO2 were successfully prepared by microemulsion and wet‐impregnation methods. Obtained photocatalysts were characterized using XRD, TEM, X‐ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) specific surface area, DR/UV‐vis and action spectrum analysis. The effect of deposition method, amount of Pt precursor and TiO2 properties on size, distribution, and chemical states of deposited Pt NPs were investigated. Finally, the correlations between the physicochemical properties and photocatalytic activities in oxidation and reduction reactions under UV and Vis light of different Pt‐TiO2 photocatalysts were discussed. It was found that, regardless of preparation method, the photoactivity mainly depended on platinum and TiO2 morphology. In view of this, we claim that the tight control of NPs’ morphology allows us to design highly active materials with enhanced photocatalytic performance. Action spectrum analysis for the most active Pt‐modified TiO2 sample showed that visible light‐induced phenol oxidation is initiated by excitation of platinum surface plasmon, and photocatalytic activity analysis revealed that photoactivity depended strongly on morphology of the obtained Pt‐modified TiO2 photocatalysts


  • 3


  • 0

    Web of Science

  • 1


Informacje szczegółowe

Publikacja w czasopiśmie
artykuły w czasopismach
Opublikowano w:
Catalysts nr 9, strony 1 - 18,
ISSN: 2073-4344
Rok wydania:
Opis bibliograficzny:
Zielińska-Jurek A., Wei Z., Janczarek M., Wysocka I., Ewa K.: Size-Controlled Synthesis of Pt Particles on TiO2 Surface: Physicochemical Characteristic and Photocatalytic Activity// Catalysts -Vol. 9,iss. 11 (2019), s.1-18
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/catal9110940
Bibliografia: test
  1. Tryba, B. Immobilization of TiO2 and Fe-C-TiO2 photocatalysts on the cotton material for application in a flow photocatalytic reactor for decomposition of phenol in water. J. Hazard. Mater. 2008, 151, 623-627. otwiera się w nowej karcie
  2. Zhang, G.; Choi, W.; Kim, S.H.; Hong, S.B. Selective photocatalytic degradation of aquatic pollutants by titania encapsulated into FAU-type zeolites. J. Hazard. Mater. 2011, 188, 198-205. otwiera się w nowej karcie
  3. Benoit-Marquié, F.; Wilkenhoner, U.; Simon, V.; Braun, A.M.; Oliveros, E.; Maurette, M.T. VOC photodegradation at the gas-solid interface of a TiO2 photocatalyst Part I: 1-butanol and 1-butylamine. J. Photochem. Photobiol. A Chem. 2000, 132, 225-232. otwiera się w nowej karcie
  4. Lu, N.; Yu, H.T.; Su, Y.; Wu, Y. Water absorption and photocatalytic activity of TiO2 in a scrubber system for odor control at varying pH. Sep. Purif. Technol. 2012, 90, 196-203. otwiera się w nowej karcie
  5. Zielińska-Jurek, A.; Wei, Z.; Wysocka, I.; Szweda, P.; Kowalska, E. The effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/TiO2 photocatalysts. Appl. Surf. Sci. 2015, 353, 317-325. otwiera się w nowej karcie
  6. Folli, A.; Pade, C.; Hansen, T.B.; de Marco, T.; Macphee, D.E. TiO2 photocatalysis in cementitious systems: Insights into self-cleaning and depollution chemistry. Cem. Concr. Res. 2012, 42, 539-548. otwiera się w nowej karcie
  7. Zhu, M.; Han, M.; Zhu, C.; Hu, L.; Huang, H.; Liu, Y.; Kang, Z. Strong coupling effect at the interface of cobalt phosphate-carbon dots boost photocatalytic water splitting. J. Colloid Interface Sci. 2018, 530, 256-263. otwiera się w nowej karcie
  8. Razalia, M.H.; Yusoff, M. Highly efficient CuO loaded TiO2 nanotube photocatalyst for CO2 photoconversion. Mater. Lett. 2018, 221, 168-171. otwiera się w nowej karcie
  9. Sugishita, N.; Kuroda, Y.; Ohtani, B. Preparation of decahedral anatase titania particles with high-level photocatalytic activity. Catal. Today 2011, 164, 391-394. otwiera się w nowej karcie
  10. Janczarek, M.; Kowalska, E.; Ohtani, B. Decahedral-shaped anatase titania photocatalyst particles: Synthesis in a newly developed coaxial-flow gas-phase reactor. Chem. Eng. J. 2016, 289, 502-512. otwiera się w nowej karcie
  11. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269-271. otwiera się w nowej karcie
  12. Zielińska-Jurek, A.; Klein, M.; Hupka, J. Enhanced visible light photocatalytic activity of Pt/I-TiO2 in a slurry system and supported on glass packing. Sep. Purif. Technol. 2017, 189, 246-252. otwiera się w nowej karcie
  13. Roberts, P.H.; Thomas, K.V. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Sci. Total Environ. 2006, 356, 143-153. otwiera się w nowej karcie
  14. Verbruggen, S.W.; Keulemans, M.; Goris, B.; Blommaerts, N.; Bals, S.; Martens, J.A.; Lenaerts, S. Plasmonic ′rainbow′ photocatalyst with broadband solar light response for environmental applications. Appl. Catal. B Environ. 2016, 188, 147-153. otwiera się w nowej karcie
  15. Wei, Z.; Janczarek, M.; Endo, M.; Colbeau-Justin, C.; Ohtani, B.; Kowalska, E. Silver-modified octahedral anatase particles as plasmonic photocatalyst. Catal. Today 2018, 310, 19-25. otwiera się w nowej karcie
  16. Nahar, S.; Hasan, M.R.; Kadhum, A.A.H.; Hasan, H.A.; Zain, M.F.M. Photocatalytic degradation of organic pollutants over visible light active plasmonic Ag nanoparticle loaded Ag2SO3 photocatalysts. J. Photochem. Photobiol. A Chem. 2019, doi:10.1016/j.jphotochem.2019.02.025. otwiera się w nowej karcie
  17. Zielińska-Jurek, A. Progress, challenge and perspective of bimetallic TiO2-based photocatalysts. J. Nanomater. 2014, doi:10.1155/2014/208920. otwiera się w nowej karcie
  18. Chen, H.W.; Ku, Y.; Kuo, Y.L. Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis. Water Res. 2007, 41, 2069-2078. otwiera się w nowej karcie
  19. Zielińska-Jurek, A.; Hupka, J. Preparation and characterization of Pt/Pd-modified titanium dioxide nanoparticles for visible light irradiation. Catal. Today 2013, 230, 181-187. otwiera się w nowej karcie
  20. Litke, A.; Frei, H.; Hensen, E.J.M.; Hofmann, J.P. Interfacial charge transfer in Pt-loaded TiO2 P25 photocatalysts studied by in-situ diffuse reflectance FTIR spectroscopy of adsorbed CO. J. Photochem. Photobiol. A Chem. 2019, 370, 84-88. otwiera się w nowej karcie
  21. Xiong, Z.; Lei, Z.; Chen, X.; Gong, B.; Zhao, Y.; Zhang, J.; Zheng, C.; Wu, J.C.S. CO2 photocatalytic reduction over Pt deposited TiO2 nanocrystals with coexposed {101} and {001} facets: Effect of deposition method and Pt precursors. Catal. Commun. 2017, 96, 1-5. otwiera się w nowej karcie
  22. Sun, B.; Vorontsov, A.V.; Smirniotis, P.G. Role of platinum deposited on TiO2 in phenol photocatalytic oxidation. Langmuir 2003, 19, 3151-3156. otwiera się w nowej karcie
  23. Wu, S.; Tan, X.; Liu, K.; Lei, J.; Wang, L.; Zhang, J. TiO2 (B) nanotubes with ultrathin shell for highly efficient photocatalytic fixation of nitrogeni. Catal. Today 2018, doi:10.1016/j.cattod.2018.11.043. otwiera się w nowej karcie
  24. Kowalska, E.; Wei, Z.; Karabiyik, B.; Herissan, A.; Janczarek, M.; Endo, M.; Markowska-Szczupak, A.; Remita, H.; Ohtani, B. Silver-modified titania with enhanced photocatalytic and antimicrobial properties under UV and visible light irradiation. Catal. Today 2015, 252, 136-142. otwiera się w nowej karcie
  25. Ohtani, B.; Prieto-Mahaney, O.O.; Li, D.; Abe, R. What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J. Photochem. Photobiol. A Chem. 2010, 216, 179-182. otwiera się w nowej karcie
  26. Luo, Z.; Poyraz, A.S.; Kuo, C.H.; Miao, R.; Meng, Y.; Chen, S.Y.; Jiang, T.; Wenos, C.; Suib, S.L. Crystalline mixed phase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalytic activity. Chem. Mater. 2015, 27, 6-17. otwiera się w nowej karcie
  27. Zhao, H.; Liu, L.; Andino, J.M.; Li, Y. Bicrystalline TiO2 with controllable anatase-brookite phase content for enhanced CO2 photoreduction to fuels. J. Mater. Chem. A 2013, 1, 8209-8216. otwiera się w nowej karcie
  28. Kitchens, C.L.; McLeod, M.C.; Roberts, C.B. Chloride ion effects on synthesis and directed assembly of copper nanoparticles in liquid and compressed alkane microemulsions. Langmuir 2005, 21, 5166-5173. otwiera się w nowej karcie
  29. Han, Y.; Liu, C.J.; Ge, Q.; Effect of surface oxygen vacancy on Pt cluster adsorption and growth on the defective anatase TiO2 (101) surface. J. Phys. Chem. C 2007, 111, 16397-16404. otwiera się w nowej karcie
  30. Cueto, M.; Piedrahita, M.; Caro, C.; Martínez-Haya, B.; Sanz, M.; Oujja, M.; Castillejo, M. Platinum nanoparticles as photoactive substrates for mass spectrometry and spectroscopy sensors. J. Phys. Chem. C 2014, 118, 11432-11439. otwiera się w nowej karcie
  31. Jung, S.; Shuford, K.L.; Park, S. Optical property of a colloidal solution of platinum and palladium nanorods: Localized surface plasmon resonance. J. Phys. Chem. C 2011, 115, 19049-19053. otwiera się w nowej karcie
  32. Kowalska, E.; Abea, R.; Ohtani, B. Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: Action spectrum analysis. Chem. Commun. 2009, 2, 241-243. otwiera się w nowej karcie
  33. Galhenage, R.P.; Yan, H.; Tenney, S.A.; Park, N.; Henkelman, G.; Albrecht, P.; Mullins, D.R.; Chen, D.A. Understanding the nucleation and growth of metals on TiO2: Co compared to Au, Ni, and Pt. J. Phys. Chem. C 2013, 117, 7191−7201. otwiera się w nowej karcie
  34. Campbell, C.T. Ultrathin metal films and particles on oxide surfaces: Structural, electronic and chemisorptive properties. Surf. Sci. Rep. 1997, 27, 1-111. otwiera się w nowej karcie
Źródła finansowania:
Politechnika Gdańska

wyświetlono 43 razy

Publikacje, które mogą cię zainteresować

Meta Tagi