Sphere Drive and Control System for Haptic Interaction With Physical, Virtual, and Augmented Reality - Publikacja - MOST Wiedzy

Wyszukiwarka

Sphere Drive and Control System for Haptic Interaction With Physical, Virtual, and Augmented Reality

Abstrakt

A system for haptic interaction with physical, virtual, and augmented realities, founded on drive and measurement elements (DMEs), is considered. The system consists of eight DME rolls equipped with linear actuators, able to measure their angular velocity, drive the sphere, and adjust downforce (pressing the roll against the sphere). Two modeling issues are addressed. Special effort is put in to compensate for various technical issues. Analytic derivation of the relation between the angular velocities of the rolls and the sphere is presented. On this basis, the importance of control over the downforce applied to an individual roll is indicated with the aim of minimizing the wear of the roll. The selection of the proper downforce for each specific position (angle) of a DME roll can extend its life cycle by reducing its grinding on the sphere. The issue of modeling the relation between the angular velocity of a given DME and the sphere is addressed. In a simplified case, such a relation can be obtained analytically. However, for a nonuniform distribution of reaction forces on the contact area, a numerical approach is necessary. Two numerical methods for the estimation of the angular velocity of the DME roll are presented and discussed. Moreover, an algorithm for the estimation of the sphere's rotational motion parameters is described and implemented, proving the usefulness of the presented method.

Cytowania

  • 6

    CrossRef

  • 5

    Web of Science

  • 8

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 28 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (2019 IEEE)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY nr 27, strony 588 - 602,
ISSN: 1063-6536
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Kowalczuk Z., Tatara M.: Sphere Drive and Control System for Haptic Interaction With Physical, Virtual, and Augmented Reality// IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY -Vol. 27,iss. 2 (2019), s.588-602
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/tcst.2017.2780057
Bibliografia: test
  1. A. Mazikowski and J, Lebiedź, "Image projection in Immer- sive 3D Visualization Laboratory", presented at 18th Interna- tional Conference in Knowledge Based and Intelligent Informa- tion and Engineering Systems KES, Gdynia, 2014, in Proce- dia Computer Science 35, 2014, pp. 842-850. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S18770509140 12162. otwiera się w nowej karcie
  2. J. Lebiedź and A. Mazikowski, "Innovative Solutions for Immersive 3D Visualization Laboratory", presented at 22nd International Conference on Computer Graphics, Visualization and Computer Vision WSCG, 2014, in Communication Papers Proceedings, (ed. Vaclav Skala), Plzeň, 2014, p. 315-319. [Online]. Available: http://wscg.zcu.cz/WSCG2014/!! 2014- WSCG-Communication.pdf#page=327.
  3. J. Lebiedź and A. Mazikowski, "Launch of the Immersive 3D Visualization Laboratory", in Szybkobieżne Pojazdy Gasienicowe, vol. 34, no. 1, 2014. [Online]. Available: http://www.obrum.gliwice.pl/upload/downloads/spg/114/04 en Lebiedz Mazikowski.pdf.
  4. J. Lebiedź, J. Lubinski, A. Mazikowski, "Immersive 3d visualization laboratory concept", in: 2nd International Conference on Information Technology (ICIT), 2010, pp. 71-74.
  5. "The world in a box [the big picture]", IEEE Spectrum 52, pp. 20-21, 2015. otwiera się w nowej karcie
  6. K.E. MacLean, "Haptic Interaction Design for Everyday Interfaces", Reviews of Human Factors and Ergonomics, vol. 4(1), pp. 149-193, 2008. otwiera się w nowej karcie
  7. G. R. Luecke, "Haptic Interactions Using Virtual Manipulator Cou- pling With Applications to Underactuated Systems" in IEEE Trans- actions on Robotics, vol. 27, no. 4, pp. 730-740, Aug. 2011. doi: 10.1109/TRO.2011.2141210 otwiera się w nowej karcie
  8. J. P. Kim, S. Y. Baek, J. Ryu, "A Force Bounding Approach for Multi-Degree-of-Freedom Haptic Interaction" in IEEE/ASME Transac- tions on Mechatronics, vol. 20, no. 3, pp. 1193-1203, June 2015. doi: 10.1109/TMECH.2014.2333537 otwiera się w nowej karcie
  9. R. J. Adams, B. Hannaford, "Stable haptic interaction with virtual environments" in IEEE Transactions on Robotics and Automation, vol. 15, no. 3, pp. 465-474, Jun 1999. doi: 10.1109/70.768179 otwiera się w nowej karcie
  10. S. A. Bowyer, F. Rodriguez y Baena, "Dissipative Control for Physical Human-Robot Interaction" in IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1281-1293, Dec. 2015. doi: 10.1109/TRO.2015.2477956 otwiera się w nowej karcie
  11. R. Cortesao, J. Park, O. Khatib, "Real-time adaptive control for hap- tic telemanipulation with Kalman active observers" in IEEE Trans- actions on Robotics, vol. 22, no. 5, pp. 987-999, Oct. 2006. doi: 10.1109/TRO.2006.878787 otwiera się w nowej karcie
  12. M. Yaqoob, S. R. S. Qaisrani, M. W. Tariq, Y. Ayaz,S. Iqbal, S. Nisar, "Design and Control of a Haptic Enabled Robotic Manipulator" in International Journal of Advanced Robotic Systems, vol. 12, no. 7, July 2015. otwiera się w nowej karcie
  13. P. Hehenberger, B. Vogel-Heuser, D. Bradley, B. Eynard, T. Tomiyama, S. Achiche, "Design, modelling, simulation and integration of cyber physical systems: Methods and applications", Computers in Industry"= 82 (2016) 273-289. otwiera się w nowej karcie
  14. E. Medina, R. Fruland, S. Weghorst, "Virtusphere: Walking in a hu- man size vr "hamster ball"", Proceedings of the Human Factors and Ergonomics Society Annual Meeting 52 (2008) 2102-2106. otwiera się w nowej karcie
  15. H. Iwata, H. Yano, H. Fukushima, H. Noma, "Circulafloor", in: ACM SIG-GRAPH 2004 Emerging Technologies, SIGGRAPH '04, ACM, New York, NY, USA, 2004, doi:10.1145/1186155.1186159. otwiera się w nowej karcie
  16. H. Iwata, H. Yano, H. Fukushima, H. Noma, "Circulafloor [locomotion interface]", IEEE Computer Graphics and Applications 25 (2005) 64-67. otwiera się w nowej karcie
  17. "Cyberith virtual interface", 2015. [Online]. otwiera się w nowej karcie
  18. Availavle: http://cyberith.com/.
  19. M. Nabiyouni, S. Scerbo, V. DeVito, S. Smolen, P. Starrin, D. A. Bow- man, "Design and evaluation of a visual acclimation aid for a semi- natural locomotion device", in: 3D User Interfaces (3DUI), 2015 IEEE Symposium on, 2015, pp. 11-14. doi:10.1109/3DUI.2015.7131718. otwiera się w nowej karcie
  20. W. E. Marsh, T. Kluss, "Capturing user intent in a virtusphere", in:Proceedings of the 11th Biannual Conference on Italian SIGCHI Chap- ter, CHItaly 2015, ACM, New York, NY, USA, 2015, pp. 170-173. doi:10.1145/2808435.2808459. otwiera się w nowej karcie
  21. W. Tarnowski, "Lecture Notes from Basics of Machine Construction, Chapter 6: Friction gears", Koszalin University of Technology. [Online].
  22. J. Gao, W. D. Luedtke, D. Gourdon, M. Ruths, J. N. Israelachvili and U. Landman, "Frictional forces and Amontons' law: from the molecular to the macroscopic scale", in The Journal of Physical Chemistry B, vol. 108, no. 11, pp. 3410-3425, 2014. otwiera się w nowej karcie
  23. B. Bhushan, "Modern Tribology Handbook, Two Volume Set", ISBN 9780849384035, CRC Press, 2000. otwiera się w nowej karcie
  24. Y.H. Lee, H.K. Kim, H.D. Kim, C.Y. Park, I.S. Kim, "A Comparative Study on the Fretting Wear of Steam Generator Tubes in Korean Power Plants", Wear, vol. 255, pp. 1198-1208, 2003. otwiera się w nowej karcie
  25. A. Ramalho, J.C. Miranda, "The Relationship between Wear and Dissi- pated Energy in Sliding Systems", Wear, vol. 260, pp. 361-367, 2006. otwiera się w nowej karcie
  26. E. Sauger, S. Fouvry, L. Ponsonnet, Ph. Kapsa, J.M. Martin, L. Vincent, "Tribologically Transformed Structure in Fretting", Wear, vol. 245, pp. 39-52, 2000. otwiera się w nowej karcie
  27. X. Song, H. Liu, K. Althoefer, T. Nanayakkara, L. D. Seneviratne, "Efficient Break-Away Friction Ratio and Slip Prediction Based on Haptic Surface Exploration" in IEEE Transactions on Robotics, vol. 30, no. 1, pp. 203-219, Feb. 2014. doi: 10.1109/TRO.2013.2279630 otwiera się w nowej karcie
  28. J. Williams, "Engineering Tribology", Cambridge University Press, 1994.
  29. P. Tomaraee, A. Mardani, A. Mohebbi and H. Taghavifar, "Relationships among the contact patch length and width, the tire deflection and the rolling resistance of a free-running wheel in a soil bin facility", in Spanish Journal of Agricultural Research, vol. 13, issue 2, 2015. [Online]. otwiera się w nowej karcie
  30. Available: http://dx.doi.org/10.5424/sjar/2015132-5245. otwiera się w nowej karcie
  31. Http, "The contact patch". [Online]. Available: http://the-contact- patch.com/.
Weryfikacja:
Politechnika Gdańska

wyświetlono 29 razy

Publikacje, które mogą cię zainteresować

Meta Tagi