Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory - Publikacja - MOST Wiedzy

Wyszukiwarka

Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory

Abstrakt

This article is devoted to investigate the stability of different types of Single Walled Carbon Nanotubes (SWCNTs) such as zigzag, chiral, and armchair types which are rested in Winkler elastic foundations exposing to both the low and high temperature environments. Also, the Surface effects which include surface energy and surface residual stresses, are taken into consideration in this study. It may be noted that the surface energy aids in the increase of the flexural rigidity whereas the surface residual stresses act as distributed transverse load. Further, the proposed model is developed by considering a novel refined beam theory namely one variable first order shear deformation beam theory along with the Hamilton’s principle. Navier’s method has been implemented to find out the critical buckling loads for Hinged-Hinged (H-H) boundary condition for zigzag, chiral, and armchair types of SWCNTs. A parametric study is also conducted to report the influence of various scaling parameters like small scale parameters, change in temperature, Winkler stiffness, and length to diameter ratio on critical buckling loads. Also, the present model is validated by comparing the results with other published work.

Cytowania

  • 2 5

    CrossRef

  • 4 1

    Web of Science

  • 3 5

    Scopus

Autorzy (4)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 49 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (2019 Taylor & Francis Group, LLC)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES nr 49, strony 581 - 585,
ISSN: 1539-7734
Język:
angielski
Rok wydania:
2021
Opis bibliograficzny:
Subrat Kumar J., Chakraverty S., Malikan M., Tornabene F.: Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory// MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES -Vol. 49,iss. 4 (2021), s.581-585
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1080/15397734.2019.1698437
Bibliografia: test
  1. Akgöz, B., and Ö. Civalek. 2011. Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories. Journal of Computational and Theoretical Nanoscience 8:1821-1827. otwiera się w nowej karcie
  2. Arefi, Mohammad, and Amir Hossein Soltan Arani. 2018 Higher order shear deformation bending results of a magnetoelectrothermoelastic functionally graded nanobeam in thermal, mechanical, electrical, and magnetic environments. Mechanics Based Design of Structures and Machines 46(6):669-692. otwiera się w nowej karcie
  3. Berghouti, H., E. A. Adda Bedia, A. Benkhedda, and A. Tounsi. 2019
  4. Bedia, W. A., M. S. Houari, A. Bessaim, A. A. Bousahla, A. Tounsi, T. Saeed, and M. S. Alhodaly. otwiera się w nowej karcie
  5. A New Hyperbolic Two-Unknown Beam Model for Bending and Buckling Analysis of a Nonlocal Strain Gradient Nanobeams. Journal of Nano Research 57:175-191. otwiera się w nowej karcie
  6. Chaabane, L. A., F. Bourada, M. Sekkal, S. Zerouati, F. Z. Zaoui, A. Tounsi, A. Derras, A. A.
  7. Bousahla, and A. Tounsi. 2019. Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation. Structural Engineering and Mechanics71(2):185-96.
  8. Chang, W. J., H. L. Lee. 2013. Free vibration of an embedded conical nanotube with surface effect. Digest Journal of Nanomaterials and Biostructures 8:1325-1333. otwiera się w nowej karcie
  9. Chen, X., C. Q. Fang, and X. Wang. 2017. The influence of surface effect on vibration behaviors of carbon nanotubes under initial stress. Physica E 85:47-55. otwiera się w nowej karcie
  10. Dastjerdi, S. and Y. Tadi Beni. 2019. A novel approach for nonlinear bending response of macro-and nanoplates with irregular variable thickness under nonuniform loading in thermal environment. Mechanics Based Design of Structures and Machines 1-26. otwiera się w nowej karcie
  11. Draiche, K., A. A. Bousahla, A. Tounsi, A. S. Alwabli, A. Tounsi, and S. R. Mahmoud. 2019. Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory. Computers and Concrete 24(4):369-78. otwiera się w nowej karcie
  12. Draoui, A., M. Zidour, A. Tounsi, and B. Adim. 2019. Static and Dynamic Behavior of Nanotubes- Reinforced Sandwich Plates Using (FSDT). Journal of Nano Research 57:117-135. otwiera się w nowej karcie
  13. Eringen, A. C. 1972. Nonlocal polar elastic continua. International journal of engineering science 10:1-16. otwiera się w nowej karcie
  14. Farshi, B., A. Assadi, and A. Alinia-Ziazi. 2010. Frequency analysis of nanotubes with consideration of surface effects. Applied Physics Letters 96:093105. otwiera się w nowej karcie
  15. Fattahi, A. M., S. Sahmani, and N. A. Ahmed. 2019. Nonlocal strain gradient beam model for nonlinear secondary resonance analysis of functionally graded porous micro/nano-beams under periodic hard excitations. Mechanics Based Design of Structures and Machines 1-30. otwiera się w nowej karcie
  16. Jena, S. K., and S. Chakraverty. 2018a. Free vibration analysis of variable cross-section single layered graphene nano-ribbons (SLGNRs) using differential quadrature method. Frontiers in Built Environment 4:63. otwiera się w nowej karcie
  17. Jena, S. K., and S. Chakraverty. 2018b. Free vibration analysis of single walled carbon nanotube with exponentially varying stiffness. Curved and Layered Structures 5:201-212. otwiera się w nowej karcie
  18. Jena, S. K., and S. Chakraverty. 2018c. Free vibration analysis of Euler-Bernoulli Nano beam using differential transform method. International Journal of Computational Materials Science and Engineering 7:1850020. otwiera się w nowej karcie
  19. Jena, S. K., S. Chakraverty, and F. Tornabene. 2019a. Vibration characteristics of nanobeam with exponentially varying flexural rigidity resting on linearly varying elastic foundation using differential quadrature method. Materials Research Express 6:085051. otwiera się w nowej karcie
  20. Jena, S. K., S. Chakraverty, and F. Tornabene. 2019b. Dynamical behavior of nanobeam embedded in constant, linear, parabolic, and sinusoidal types of Winkler elastic foundation using First-Order nonlocal strain gradient model. Materials Research Express 6:0850f2. otwiera się w nowej karcie
  21. Jena, S. K., S. Chakraverty, and F. Tornabene. 2019c. Buckling Behavior of Nanobeam Placed in an Electro-Magnetic Field Using Shifted Chebyshev polynomials Based Rayleigh-Ritz Method. Nanomaterials 9(9): 1326. otwiera się w nowej karcie
  22. Jena, S. K., S. Chakraverty, R. M. Jena, and F. Tornabene. 2019. A novel fractional nonlocal model and its application in buckling analysis of Euler-Bernoulli nanobeam. Materials Research Express 6:055016. otwiera się w nowej karcie
  23. Jena, S. K., S. Chakraverty, and M. Malikan. 2019. Implementation of Haar wavelet, higher order Haar wavelet, and differential quadrature methods on buckling response of strain gradient nonlocal beam embedded in an elastic medium. Engineering with Computers https://doi.org/10.1007/s00366- 019-00883-1. otwiera się w nowej karcie
  24. Jena, S. K., and S. Chakraverty. 2019a. Differential Quadrature and Differential Transformation Methods in Buckling Analysis of Nanobeams, Curved and Layered Structures 6:68-76. otwiera się w nowej karcie
  25. Jena, S. K, and S. Chakraverty. 2019b. Dynamic Behavior of Electro-Magnetic Nanobeam Using Haar Wavelet Method (HWM) and Higher Order Haar Wavelet Method (HOHWM). The European Physical Journal Plus 134(10):538. otwiera się w nowej karcie
  26. Jena, S. K., and S. Chakraverty. 2019c. Dynamic Analysis of Single-Layered Graphene Nano- Ribbons (SLGNRs) with Variable Cross-Section Resting on Elastic Foundation. Curved and Layered Structures 6(1):132-145. otwiera się w nowej karcie
  27. Jena, S. K., S. Chakraverty, and R. M. Jena. 2019. Propagation of Uncertainty in Free Vibration of otwiera się w nowej karcie
  28. Euler-Bernoulli Nanobeam. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41(10): 436.
  29. Larbi, L.O., A. Kaci, M. S. A. Houari, and A. Tounsi. 2013. An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams. Mechanics Based Design of Structures and Machines 41(4):421-433. otwiera się w nowej karcie
  30. Lee, H. L., and W. J. Chang. 2010. Surface effects on frequency analysis of nanotubes using nonlocal Timoshenko beam theory. Journal of Applied Physics 108:093503. otwiera się w nowej karcie
  31. Li, L., and Y. Hu. 2015. Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. International Journal of Engineering Science 97:84-94. otwiera się w nowej karcie
  32. Malikan, M. 2017. Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory. Applied Mathematical Modelling 48:196-207. otwiera się w nowej karcie
  33. Malikan, M., and S. Dastjerdi. 2018. Analytical buckling of FG nanobeams on the basis of a new one variable first-order shear deformation beam theory. International Journal of Engineering & Applied Sciences 10:21-34. otwiera się w nowej karcie
  34. Malikan, M., F. Tornabene, and R. Dimitri. 2018. Nonlocal three-dimensional theory of elasticity for buckling behavior of functionally graded porous nanoplates using volume integrals. Materials Research Express 5:095006. otwiera się w nowej karcie
  35. Malikan, M., V. B. Nguyen, and F. Tornabene. 2018a. Damped forced vibration analysis of single- walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory. Engineering Science and Technology, an International Journal 21:778-786. otwiera się w nowej karcie
  36. Malikan, M., V. B. Nguyen, and F. Tornabene. 2018b. Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory. Materials Research Express 5: 075031. otwiera się w nowej karcie
  37. Malikan, M., and V. B. Nguyen. 2018. Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory. Physica E: Low-dimensional Systems and Nanostructures 102:8-28. otwiera się w nowej karcie
  38. Malikan, M., R. Dimitri, and F. Tornabene. 2019. Transient response of oscillated carbon nanotubes with an internal and external damping. Composites Part B: Engineering 158:198-205. otwiera się w nowej karcie
  39. Malikan, M., V. B. Nguyen, R. Dimitri, and F. Tornabene. 2019. Dynamic modeling of non- cylindrical curved viscoelastic single-walled carbon nanotubes based on the second gradient theory. Materials Research Express 6:075041. otwiera się w nowej karcie
  40. Malikan, M. 2019. On the buckling response of axially pressurized nanotubes based on a novel nonlocal beam theory. Journal of Applied and Computational Mechanics 5:103-112. otwiera się w nowej karcie
  41. Medani, M., A. Benahmed, M. Zidour, H. Heireche, A. Tounsi, A. A. Bousahla, A. Tounsi, and S.
  42. R. Mahmoud. 2019. Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle. Steel and Composite Structures 32(5):595-610.
  43. Mehralian, F., Y. Tadi Beni, and M. Karimi Zeverdejani. 2017. Calibration of nonlocal strain gradient shell model for buckling analysis of nanotubes using molecular dynamics simulations. Physica B: Condensed Matter 521:102-111. otwiera się w nowej karcie
  44. Murmu, T., and S. C. Pradhan. 2010. Thermal effects on the stability of embedded carbon nanotubes. Computational Materials Science 47:721-7. otwiera się w nowej karcie
  45. Pradhan, S. C., and G. K. Reddy. 2011. Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM. Computational Materials Science 50:1052-1056. otwiera się w nowej karcie
  46. Semmah, A., H. Heireche, A. A. Bousahla, and A. Tounsi. 2019. Thermal buckling analysis of SWBNNT on Winkler foundation by non-local FSDT. Advances in Nano Research 7(2):89.
  47. She, G. L., F. G. Yuan, Y. R. Ren, and W. Sh. Xiao. 2017. On buckling and post buckling behavior of nanotubes. International Journal of Engineering Science 121:130-142. otwiera się w nowej karcie
  48. Sun, Dong-Liang, and Xian-Fang Li. 2019. Initial value method for free vibration of axially loaded functionally graded Timoshenko beams with nonuniform cross section. Mechanics Based Design of Structures and Machines 47(1):102-120. otwiera się w nowej karcie
  49. Teifouet, M., A. Robinson, and S. Adali. 2017. Buckling of nonuniform carbon nanotubes under concentrated and distributed axial loads. Mechanical Sciences 8:299-305.
  50. Thai, H.-T. 2012. A nonlocal beam theory for bending, buckling, and vibration of nanobeams. International Journal of Engineering Science 52:56-64. otwiera się w nowej karcie
  51. Wang, B. L., M. Hoffman, and A. B. Yu. 2012. Buckling analysis of embedded nanotubes using gradient continuum theory. Mechanics of Materials 45:52-60. otwiera się w nowej karcie
  52. Wang, C. M., Y. Y. Zhang, S. S. Ramesh, and S. Kitipornchai. 2006. Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory. Journal of Physics D: Applied Physics 39:3904-3909. otwiera się w nowej karcie
  53. Zhen, Y. X. 2017. Wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes with surface and nonlocal effects. Physica E: Low-dimensional Systems and Nanostructures 86:275-279. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 44 razy

Publikacje, które mogą cię zainteresować

Meta Tagi