Stability Assessment of Coastal Cliffs Incorporating Laser Scanning Technology and a Numerical Analysis - Publikacja - MOST Wiedzy


Stability Assessment of Coastal Cliffs Incorporating Laser Scanning Technology and a Numerical Analysis


We investigated the cli coast in Jastrzebia Gora, Poland. The measurements that were taken between 2014 and 2018 by applying terrestrial, mobile, and airborne laser scanning describe a huge geometric modification involving dislocations in a 2.5 m range. Dierential maps and a volumetric change analysis made it possible to identify the most deformed cli’s location. Part of the monitoring of coastal change involved the measurement of a cli sector in order to determine the soil mass flow down the slope. A full geometric image of the cli was complemented by a stability assessment that incorporated numerical methods. The analysis showed that the stability coecients, assuming a particular soil strata layout and geotechnical parameters, are unsafely close to the limit value. Moreover, the numerical computations, which were performed under simplifying assumptions, were not able to capture a multitude of other random factors that may have an impact on the soil mass stability. Thus, displacements of both reinforced soil and gabions were detected that are intended to prevent the cli from deforming and to protect the infrastructure in its vicinity. The array of applied measurement methods provides a basis for the development of research aimed at optimization of applied tools, safety improvements, and a rapid reaction to threats.


  • 1 3


  • 1 2

    Web of Science

  • 1 4


Cytuj jako

Pełna treść

pobierz publikację
pobrano 38 razy
Wersja publikacji
Accepted albo Published Version
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Publikacja w czasopiśmie
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Remote Sensing nr 11, strony 1 - 30,
ISSN: 2072-4292
Rok wydania:
Opis bibliograficzny:
Tysiąc P., Ossowski R., Przyborski M.: Stability Assessment of Coastal Cliffs Incorporating Laser Scanning Technology and a Numerical Analysis// Remote Sensing. -Vol. 11, iss. 16 (2019), s.1-30
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/rs11161951
Bibliografia: test
  1. Whitaker, J.K. John Stuart Mill's Methodology. J. Political Econ. 1975, 83, 1033-1050. [CrossRef] otwiera się w nowej karcie
  2. Yang, B.; Hawthorne, T.L.; Torres, H.; Feinman, M. Using Object-Oriented Classification for Coastal Management in the East Central Coast of Florida: A Quantitative Comparison between UAV, Satellite, and Aerial Data. Drones 2019, 3, 60. [CrossRef] otwiera się w nowej karcie
  3. Xiong, L.; Wang, G.; Bao, Y.; Zhou, X.; Wang, K.; Liu, H.; Sun, X.; Zhao, R. A Rapid Terrestrial Laser Scanning Method for Coastal Erosion Studies: A Case Study at Freeport, Texas, USA. Sensors 2019, 19, 3252. [CrossRef] [PubMed] otwiera się w nowej karcie
  4. Hu, B.; Chen, J.; Zhang, X. Monitoring the Land Subsidence Area in a Coastal Urban Area with InSAR and GNSS. Sensors 2019, 19, 3181. [CrossRef] [PubMed] otwiera się w nowej karcie
  5. Mancini, F.; Castagnetti, C.; Rossi, P.; Dubbini, M.; Fazio, N.L.; Perrotti, M.; Lollino, P. An Integrated Procedure to Assess the Stability of Coastal Rocky Cliffs: From UAV Close-Range Photogrammetry to Geomechanical Finite Element Modeling. Remote Sens. 2017, 9, 1235. [CrossRef] otwiera się w nowej karcie
  6. Calista, M.; Mascioli, F.; Menna, V.; Miccadei, E.; Piacentini, T. Recent Geomorphological Evolution and 3D Numerical Modelling of Soft Clastic Rock Cliffs in the Mid-Western Adriatic Sea (Abruzzo, Italy). Geosciences 2019, 9, 309. [CrossRef] otwiera się w nowej karcie
  7. Gallina, V.; Torresan, S.; Zabeo, A.; Rizzi, J.; Carniel, S.; Sclavo, M.; Pizzol, L.; Marcomini, A.; Critto, A. Assessment of Climate Change Impacts in the North Adriatic Coastal Area. Part II: Consequences for Coastal Erosion Impacts at the Regional Scale. Water 2019, 11, 1300. [CrossRef] otwiera się w nowej karcie
  8. Institute of Meteorology and Water Management, National Research Institute, Marine Branch GDYNIA: Assessment of Actual and Future Climate Changes on Polish Coastal Zone and Its Ecosystem. Institute of Meteorology and Water Management, National Research Institute, 2014. Available online: gfx/nfosigw/pl/nfoekspertyzy/858/210/1/2014-424.pdf (accessed on 17 August 2019). (In Polish) otwiera się w nowej karcie
  9. Jakusik, E.; Wójcik, R.; Pilarski, M.; Biernacik, D.; Miętus, M. Polish Coastal Zone Sea Level: Actual State and Prognoses, in: Climaic and Oceanographic Conditions in Poland and South Baltic (in Polish: Poziom Morza w Polskiej Strefie Brzegowej-Stan Obecny i Spodziewane Zmiany w Przeszłości w: Warunki Klimatyczne i Oceanograficzne w Polsce i na Bałtyku Południowym). Warsaw: IMiGW-PIB. 2012. Available online: (accessed on 17 August 2019).
  10. Subotowicz, W. A Preliminary Assessment of the Dynamics of the Cliff Shores of the Gdansk Region in the Light of Ground Photograph Interpretation; Polish Geographical Society: Warsaw, Poland, 1975; Volume 9, pp. 59-73. (In Polish)
  11. Massalski, W.; Subotowicz, W. A Study of Jastrzebia Gora Cliff Protection; Polish Maritime Office: Gdynia, Poland, 1992. (In Polish)
  12. Kostrzewski, A.; Zwolinski, Z.; Winowski, M.; Samołyk, M. Cliff top recession rate and cliff hazards for the sea coast of Wolin Island (Southern Baltic). Baltica 2015, 28, 109-120. [CrossRef] otwiera się w nowej karcie
  13. Labuz, T.A.; Kowalewska-Kalkowska, H. Coastal erosion caused by the heavy storm surge of November 2004 in the southern Baltic Sea. Clim. Res. 2011, 48, 1572-1616. [CrossRef] otwiera się w nowej karcie
  14. Poland. Information about Inspection Results: Coast Protecion on Hel Peninsula and Vistula Spit. LGD-4101-012/2013 Vol. 4/2015/P/13/141/LGD; 2011; (In Polish). Available online: kontrole/wyniki-kontroli-nik/pobierz,nik-p-13-141-brzegi-morskie,typ,kk.pdf (accessed on 17 August 2019). otwiera się w nowej karcie
  15. Subotowicz, W. Geodynamic Investigation of Polish Cliffs and the Problem of Jastrzebia Gora Cliff protection (In Polish: Badania geodynamiczne klifów w Polsce i problem zabezpieczenia brzegu klifowego w Jastrzębiej Górze). In Inżynieria Morska i Geotechnika; IMOGEOR, Sp. z o. o.: Gdansk, Poland, 2000; Volume 5, pp. 252-257.
  16. Remote Sens. 2019, 11, 1951 28 of 30 otwiera się w nowej karcie
  17. Kaminski, M.; Krawczyk, M.; Zientara, P. Recognition of geological structure of the Jastrzebia Gora cliff using resistivity tomography methods for landslide hazard (in Polish: Rozpoznanie budowy geologicznej klifu w Jastrzębiej Górze metodą tomografii elektrooporowej pod kątem zagrożenia osuwiskowego). Biult. Państ. Inst. Geolg. 2012, 452, 119-130. Available online: publikacje-2/biuletyn-pig/biuletyn-452/1652-biul452-kaminski-krawczyk-pdf/file.html (accessed on 17 August 2019). otwiera się w nowej karcie
  18. Abbas, M.A.; Luh, L.C.; Setan, H.; Majid, Z.; Chong, A.K.; Aspuri, A.; Idris, K.M.; Farid, M. Terrestrial Laser Scanners Pre-Processing: Registration and Georeferencing. J. Teknol. 2014, 71, 115-122. [CrossRef] otwiera się w nowej karcie
  19. Marion, J.; Pauline, L.; Emmanuel, A.; Nicolas, L.D.; Mickael, B.; Véronique, C.; Rejanne, L.B.; Christophe, D. Adequacy of pseudo-direct georeferencing of terrestrial laser scanning data for coastal landscape surveying against indirect georeferencing. Eur. J. Remote Sens. 2017, 1, 155-165.
  20. Liadsky, J. Introduction to LIDAR. In Proceedings of the NPS Lidar Workshop, Boulder, CO, USA, 24 May 2007; Available online: -2007-joe (accessed on 17 August 2019).
  21. Petrie, G. Airborne Topographic Laser Scanners. Geoinformatics 2011, 2, 34-44. otwiera się w nowej karcie
  22. Axelsson, P. Processing of laser scanner data-Algorithms and applications. Isprs J. Photogramm. Remote. Sens. 1999, 54, 138-147. [CrossRef] otwiera się w nowej karcie
  23. Reutebuch, S.E.; McGaughey, R.J.; Andersen, H.E.; Carson, W.W. Accuracy of a high-resolution lidar terrain model under a conifer forest canopy. Can. J. Remote. Sens. 2015, 29, 527-535. [CrossRef] otwiera się w nowej karcie
  24. Glennie, C.L.; Carter, W.E.; Shrestha, R.L.; Dietrich, W.E. Geodetic imaging with airborne LiDAR: The Earth's surface revealed. Rep. Prog. Phys. 2013. [CrossRef] otwiera się w nowej karcie
  25. Telling, J.; Lyda, A.; Hartzell, P.; Glennie, C. Review of Earth science research using terrestrial laser scanning. Earth-Sci. Rev. 2017, 169, 35-68. [CrossRef] otwiera się w nowej karcie
  26. Martin, H.; Wilm, J. Evaluation of Surface Registration Algorithms for PET MOTION correction. Master's Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, June 2010.
  27. Warchol, A.; Hejmanowska, B. Example of the assessment of data integration accuracy on the base of airborne and terrestrial laser scanning. Archiwum Fotogrametrii Kartografii Teledetekcji 2011, 22, 411-421. (In Polish)
  28. Borkowski, A.; Jozkow, G. Filtering of airborne laser scanning data using a moving polynomial surface model (in Polish: Wykorzystanie wielomianowych powierzchni ruchomych w procesie filtracji danych pochodzących z lotniczego skaningu laserowego). Arch. Fotogram. Kartogr. Teledetekcji 2006, 16, 63-73.
  29. Pfeifer, N.; Mandlburger, G. Lidar data filtering and DTM generation. In Topographic Laser Scanning and Imaging: Principles and Processing; otwiera się w nowej karcie
  30. Jie, S., Charles, K.T., Eds.; CSC Press: Boca Raton, FL, USA, 2008; pp. 306-334.
  31. Axelsson, P. DEM generation from laser scanner data using adaptive TIN models. Int. Arch. Photogramm. Remote Sens. 2000, 33, 110-117.
  32. Chen, Z.; Gao, B.; Devereux, B. State-of-the-Art: DTM Generation Using Airborne LIDAR Data. Sensors 2017, 17, 150. [CrossRef] [PubMed] otwiera się w nowej karcie
  33. Tyagur, N.; Hollaus, M. Digital Terrain Models from Mobile Laser Scanning Data in Moravian karts. In Proceedings of the 2016 XXIII ISPRS Congress of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, 12-19 July 2016; pp. 387-394. otwiera się w nowej karcie
  34. Somma, R.; Matano, F.; Marino, E.; Caputo, T.; Esposito, G.; Caccavale, M.; Carlino, S.; Iuliano, S.; Mazzola, S.; Molisso, F.; et al. Application of Laser Scanning for Monitoring Coastal Cliff Instability in the Pozzuoli Bay, Coroglio Site, Posillipo Hill, Naples. Eng. Geol. Soc. Territ. 2015, 5, 687-690. otwiera się w nowej karcie
  35. Bitenc, M.; Lindenbergh, R.; Khoshelham, K.; Pieter, W.A. Evaluation of a LIDAR Land-Based Mobile Mapping System for Monitoring Sandy Coasts. Remote Sens. 2011, 3, 1472-1491. [CrossRef] otwiera się w nowej karcie
  36. Iván, P.; Higinio, G.; Pedro, A.; Julia, A. Land-Based Mobile Laser Scanning Systems: A Review. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 38, 163-168.
  37. Barlow, J.; Gilhafm, J.; Ignacio, I.C. Kinematic analysis of sea cliff stability using UAV photogrammetry. Int. J. Remote. Sens. 2017, 38, 2464-2479. [CrossRef] otwiera się w nowej karcie
  38. Kuhn, D.; Prufer, S. Coastal cliff monitoring and analysis of mass wasting processes with the application of terrestial laser scanning: A case study of Rugen, Germany. Geomorphology 2014, 213, 153-165. [CrossRef] otwiera się w nowej karcie
  39. Olsen, M.J.; Johnston, E.; Driscoll, N.; Ashford, S.A.; Kuester, F. Terrestrial Laser Scanning of Extended Cliff Secions in Dynamic Environments: Parameter Analysis. J. Surv. Eng. 2009. [CrossRef] otwiera się w nowej karcie
  40. Remote Sens. 2019, 11, 1951 29 of 30 otwiera się w nowej karcie
  41. Ercoli, L.; Zimbardo, M.; Nocilla, N.; Nocilla, A.; Ponzoni, E. Evaluation of cliff recession in the Valle dei Templi in Agrigento (Sicily). Eng. Geol. 2015, 192, 129-138. [CrossRef] otwiera się w nowej karcie
  42. Santos, O.F., Jr.; Amaral, R.F.; Scudelari, A.C. Failure Mechanisms of a Coastal Cliff in Rio Grande do Norte State, NE Brazil. J. Coast. Res. 2006, 2, 629-632. otwiera się w nowej karcie
  43. Hapke, C.; Plant, N. Predicting coastal cliff erosion using a Bayesian probabilistic model. Mar. Geol. 2010, 278, 140-149. [CrossRef] otwiera się w nowej karcie
  44. Suk, G.-H. Seoul Faces Increasing Risk of Landslides. The Korea Herald. 18 July 2013. Available online: (accessed on 17 August 2019).
  45. Aleotti, P.; Chowdhury, R. Landslide hazard assessment: Summary review and new perspectives. Bull. Eng. Geol. Environ. 1999, 58, 21-44. [CrossRef] otwiera się w nowej karcie
  46. Kechebour, B.E.L. Relation between Stability of Slope and the Urban Density: Case Study. Procedia Eng. 2015, 114, 824-831. [CrossRef] otwiera się w nowej karcie
  47. Lee, S.; Chwae, U.; Min, K. Landslide susceptibility mapping by correlation between topography and geological structure: The Janghung area, Korea. Geomorphology 2002, 46, 149-162. [CrossRef] otwiera się w nowej karcie
  48. Marchetti, D. Slope stability modelling of a sandstone cliff south of Livorno (Tuscany, Italy). WIT Trans. Inf. Commun. 2018. [CrossRef] otwiera się w nowej karcie
  49. Wang, X.; Zhang, L.; Ding, J.; Meng, Q.; Iqbal, J.; Li, L.; Yang, Z. Comparison of rockfall susceptibility assessment at local and regional scale: A case study in the north Beijing (China). Env. Earth. Sci. 2014, 72, 4639-4652. [CrossRef] otwiera się w nowej karcie
  50. Lee, S.; Lee, M.J.; Jung, H.S. Data Mining Approaches for Landslide Susceptibility Mapping in Umyeonsan, Seoul, in: South Korea. Appl. Sci. 2017, 7, 683. [CrossRef] otwiera się w nowej karcie
  51. Wilk, B.; Noga, R. Numerical Analysis of Jastrzebia Gora Cliff Stability Based on Terrestial Laser Scanning (in Polish). Master Thesis, Gdansk University of Technology, Gdansk, Poland, 2017.
  52. Zhu, D.Y. A concise algorithm for computing the factor of safety using the Morgenstern-Price method. Can. Geotech. J. 2005, 42, 272-278. [CrossRef] otwiera się w nowej karcie
  53. Morgenstern, N.R.; Price, V.E. The analysis of the stability of general slip surfaces. Geotechnique 1965, 15, 79-93. [CrossRef] otwiera się w nowej karcie
  54. Smolczyk, U. (Ed.) Geotechnical Engineering Handbook; vol.1. Fundamentals; otwiera się w nowej karcie
  55. Ernst & Sohn: Berlin, Germany, 2002; pp. 617-664.
  56. Goutw, T.L. Common Mistakes on the Application of Plaxis 2D in Analyzing Excavation Problems. Int. J. Appl. Eng. Res. 2014, 9, 8291-8311.
  57. Dawson, E.M.; Roth, W.H. Slope Stability Analysis with FLAC, FLAC and Numerical Modeling in Geomechanics. In Proceedings of the International Symposium, Atlanta, GA, USA, 7-12 July 1999; pp. 3-10. otwiera się w nowej karcie
  58. Dian-Qing, L.; Zhi-Yong, Y.; Zi-Jun, C.; Siu-Kui, A.; Kok-kwang, P. System reliability analysis of slope stability using generalized Subset Simulation. Appl. Math. Model. 2017, 46, 650-654.
  59. Pradhan, B.M.S.; Pirasteh, S.; Buchroithner, M.F. Landslide hazard and risk analyses at a landslide prone catchment area using statistical based geospatial model. Int. J. Remote Sens. 2011, 32, 4075-4087. [CrossRef] otwiera się w nowej karcie
  60. Jakub, S.; Paweł, B.; Artur, J.; Marek, P.; Paweł, T.; Aleksander, W.; Arthem, K.; Krzysztof, M.; Maciej, M. Maritime Laser Scanning As The Source For Spatial Data. Polish Marit. Res. 2015, 22, 9-14.
  61. Szulwic, J.; Tysiac, P. Mobile Laser Scanning Calibration on a Marine Platform. Pol. Maritmie Res. 2018. [CrossRef] otwiera się w nowej karcie
  62. Pomerleau, F.; Colas, F.; Siegwart, R. A Review of Point Cloud Registration Algorithms for Mobile Robotics. Found. Trends Robot. 2015, 4, 1-104. [CrossRef] otwiera się w nowej karcie
  63. He, Y.; Liang, B.; Yang, J.; Li, S.; He, J. An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds with Geometric Features. Sensors 2017, 17, 1862. [CrossRef] [PubMed] otwiera się w nowej karcie
  64. RiegI TLS Field Operation Manual and Workflow. UNAVCO Boulder CO. 2013. Available online: https: // (accessed on 31 January 2014). otwiera się w nowej karcie
  65. Pepe, M. CORS architecture and evaluation of positioning by low-cost GNSS receiver. Geod. Cartogr. 2018, 44, 36-44. [CrossRef] otwiera się w nowej karcie
  66. Mandlburger, G.; Pfennigbauer, M.; Pfeifer, N. Analyzing near water surface penetration in laser bathymetry-A case study at the River Pielach. ISPRS Annals of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2013, 5, W2. otwiera się w nowej karcie
  67. Remote Sens. 2019, 11, 1951 otwiera się w nowej karcie
  68. Jozkow, G. Improvement of Methods of Filtering Airborne Laser Scanning Data; Wroclaw University of Environmental and Life Sciences: Wroclaw, Poland, 2015. (In Polish)
  69. Abd-Elaty, I.; Eldeeb, H.; Vranayova, Z.; Zelenakova, M. Stability of Irrigation Canal Slopes Considering the Sea Level Rise and Dynamic Changes: Case Study El-Salam Canal, Egypt. Water 2019, 11, 1046. [CrossRef] otwiera się w nowej karcie
  70. Ossowski, R.; Tysiac, P. A new approach of coastal cliff monitoring using Mobile Laser Scanning. Pol. Mari. Res. 2018, 25, 140-147. [CrossRef] otwiera się w nowej karcie
  71. Paleczek, W. Analysis of the calculation accuracy of soil mass volume (in Polish). Zesz. Nauk. Politech. Częstochowskiej. Bud. 2015, 21, 365-371.
  72. Fredlund, D.G.; Krahn, J. Comparison of slope stability methods of analysis. Can. Geotech. J. 1977, 14, 429-439. [CrossRef] otwiera się w nowej karcie
  73. Szulwic, J.; Marek, P.M.; Szczechowski, B.; Szubiak, W.; Widerski, T. Photogrammetric Development of The Threshold Water at The Dam on The Vistula River In Wloclawek From Unmanned Aerial Vehicles (UAV). otwiera się w nowej karcie
  74. In Proceedings of the 15th International Multidisciplinary Scientific GeoConference SGEM 2015, Albena, Bulgaria, 18-24 June 2015; pp. 493-500. otwiera się w nowej karcie
  75. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( otwiera się w nowej karcie
Politechnika Gdańska

wyświetlono 201 razy

Publikacje, które mogą cię zainteresować

Meta Tagi