Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment - Publikacja - MOST Wiedzy

Wyszukiwarka

Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment

Abstrakt

Stress-driven nonlocal theory of elasticity, in its differential form, is applied to investigate the nonlinear vibrational characteristics of a hetero-nanotube in magneto-thermal environment with the help of finite element method. In order to more precisely deal with the dynamic behavior of size-dependent nanotubes, a two-node beam element with six degrees-of freedom including the nodal values of the deflection, slope and curvature is introduced. In comparison with the conventional beam element, the vector of nodal displacement for the proposed element has one additional component indicating the nodal curvature to comply with the stress-driven nonlocal beam model. The nonlinear term associated with the von Kármán strain is included in the governing equation of motion and it is assumed that the nanotube structure is exposed to temperature changes and surrounded by a magnetic field. The obtained results endorsing the amplitude-dependence of the nonlinear frequencies are justified compared to those reported in the literature and a detailed study is conducted to explore the effect of different parameters on the vibrational behavior of the considered nano-hetero-structure.

Cytowania

  • 2 6

    CrossRef

  • 3 7

    Web of Science

  • 3 7

    Scopus

Autorzy (2)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 15 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (2020 IOP Publishing Ltd)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
PHYSICA SCRIPTA nr 95, strony 1 - 22,
ISSN: 0031-8949
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Sedighi H. M., Malikan M.: Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment// PHYSICA SCRIPTA -Vol. 95,iss. 5 (2020), s.1-22
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1088/1402-4896/ab7a38
Bibliografia: test
  1. Ebrahimi, N., Tadi Beni, Y., Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory, Steel and Composite Structures, 22(6) (2016) 1301-1336. otwiera się w nowej karcie
  2. Kheibari, F., Tadi Beni, Y., Size dependent electro-mechanical vibration of single-walled piezoelectric nanotubes using thin shell model, Materials & Design, 114 (2017) 572-583. otwiera się w nowej karcie
  3. Fattahian Dehkordi, S., Tadi Beni, Y., Electro-mechanical free vibration of single-walled piezoelectric/flexoelectric nano cones using consistent couple stress theory, International Journal of Mechanical Sciences, 128-129 (2017) 125-139. otwiera się w nowej karcie
  4. Soleimani, S., Beni, Y.T., Vibration analysis of nanotubes based on two-node size dependent axisymmetric shell element, Archives of Civil and Mechanical Engineering, 18(4) (2018) 1345-1358. otwiera się w nowej karcie
  5. Dumortier, H., Lacotte, S., Pastorin, G., Marega R., et al, Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells, Nano Letters, 6 (2006) 1522-1528. otwiera się w nowej karcie
  6. Hernández-Acosta, M.A. et al, Fractional and chaotic electrical signatures exhibited by random carbon nanotube networks, Physica Scripta, 93 (2018) 125801. otwiera się w nowej karcie
  7. Khosravi, Y. et al, Fabrication of a novel carbon nanotube & graphene based device for gas detection, Physica Scripta, 93 (2018) 065801. otwiera się w nowej karcie
  8. Laurila, T., Hybrid carbon nanomaterials for electrochemical detection of biomolecules, Physica Scripta, 90 (2015) 094006. otwiera się w nowej karcie
  9. Karimov, Kh.S. et al, A carbon nanotube-based pressure sensor, Physica Scripta, 83 (2011) 065703. otwiera się w nowej karcie
  10. Nozaki, H., Itho, S., Lattice dynamics of a layered material BC2N, Physica B, 219-220 (1996) 487-489. otwiera się w nowej karcie
  11. Stephan, O., Ajayan, P.M., Colliex, C., Redlich, P., Lambert, J.M., Bernier, P., Lefin, P., Doping graphitic and carbon nanotube structures with boron and nitrogen, Science, 266 (1994) 1683-1685. otwiera się w nowej karcie
  12. Dumortier, H., Lacotte, S., Pastorin, G., Marega R., et al, Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells, Nano Letters, 6 (2006) 1522-1528. otwiera się w nowej karcie
  13. Suryavanshi, A. P., Yu, M. F., Wen, J., Tang, C., Bando, Y., Elastic modulus and resonance behavior of boron nitride nanotubes, Applied Physics Letters, 84 (2004) 2527-2529. otwiera się w nowej karcie
  14. Chen, Y., Zou, J., Campbell, S. J., Le Caer, G., Boron nitride nanotubes: Pronounced resistance to oxidation, Applied Physics Letters, 84 (2004) 2430-2432. otwiera się w nowej karcie
  15. Ciofani, G., Raffa, V., Menciassi, A., Cuschieri, A., Boron nitride nanotubes: An innovative tool for nanomedicine, Nano Today, 4 (2009) 8-10. otwiera się w nowej karcie
  16. Ciofani, G., Danti, S., Nitti S., et al, Biocompatibility of boron nitride nanotubes: an up-date of in vivo toxicological investigation, International Journal of Pharmaceutics, 444 (2013) 85-88. otwiera się w nowej karcie
  17. Han, W.-Q., Mickelson, W., Cumings, J., Zettl, A., Transformation of Bx Cy Nz nanotubes to pure BN nanotubes, Applied Physics Letters, 81 (2002) 1110. otwiera się w nowej karcie
  18. Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G., Zettl, A., Boron Nitride Nanotubes, Science, 269 (1995) 966-967. otwiera się w nowej karcie
  19. Iijima, S., Ichihashi, T., Single-shell carbon nanotubes of 1-nm diameter, Nature, 363 (1993) 603-605. otwiera się w nowej karcie
  20. Pumera, M., Miyahara, Y., What amount of metallic impurities in carbon nanotubes is small enough not to dominate their redox properties?, Nanoscale, 1 (2009) 260-265. otwiera się w nowej karcie
  21. Diana, S., Janet, H., James, W., Marisabel, L.-C., Hybrid Boron Nitride Nanotubes -Carbon Nanostructures Supercapacitor with High Energy Density, (2012) E-663225, NASA Headquarters;
  22. Washington, DC, United States. otwiera się w nowej karcie
  23. Rodríguez Juárez, A., Chigo Anota, Hernández Cocoletzi, H., Sánchez Ramírez, J.F., Castro, M., Stability and electronic properties of armchair boron nitride/carbon nanotubes, Fullerenes, Nanotubes and Carbon Nanostructures, 25(12) (2017) 716-725. otwiera się w nowej karcie
  24. Xiao, H., Zhang, C.X., Zhang, K.W., Sun, L.Z., Zhong, J.X., Tunable differential conductance of single wall C/BN nanotube heterostructure, Journal of Molecular Modeling, 19 (2013) 2965-2969. otwiera się w nowej karcie
  25. Zhang, J., Wang, C.Y., Beat vibration of hybrid boron nitride-carbon nanotubes -A new avenue to atomicscale mass sensing, Computational Materials Science, 127 (2017) 270-276. otwiera się w nowej karcie
  26. Vedaei, S.S., Nadimi, E., Gas sensing properties of CNT-BNNT-CNT nanostructures: A first principles study, Applied Surface Science, 470 (2019) 933-942. otwiera się w nowej karcie
  27. Chen, X. K., Xie, Z. X., Zhang, Y., Deng, Y. X., Zou, T. H., Liu, J., Chen, K. Q., Highly efficient thermal rectification in carbon/boron nitride Heteronanotubes, Carbon, 148 (2019) 532-539. otwiera się w nowej karcie
  28. Badjian, H., Setoodeh, A. R., Improved tensile and buckling behavior of defected carbon nanotubes utilizing boron nitride coating -A molecular dynamics study, Physica B: Condensed Matter, 507 (2017) 156-163. otwiera się w nowej karcie
  29. Genoese, Al., Genoese, An., Salerno, G., On the nanoscale behaviour of single-wall C, BN and SiC nanotubes, Acta Mechanica, (2019), https://doi.org/10.1007/s00707-018-2336-7. otwiera się w nowej karcie
  30. Eltaher, M.A., Almalki, T.A., Almitani, K.H., Ahmed, K.I.E., Abdraboh, A.M., Modal participation of fixed-fixed single-walled carbon nanotube with vacancies, International Journal of Advanced Structural Engineering, 11 (2019) 151- 163. otwiera się w nowej karcie
  31. Kiani, K., Pakdaman, H., On the nonlocality of bilateral vibrations of single-layered membranes from vertically aligned double-walled carbon nanotubes, Physica Scripta, 95 (2020) 035221. otwiera się w nowej karcie
  32. Salamat, D., Sedighi, H.M., The effect of small scale on the vibrational behavior of single-walled carbon nanotubes with a moving nanoparticle, Journal of Applied and Computational Mechanics, 3 (2017) 208-217.
  33. Sedighi, H.M., Yaghootian, A., Dynamic instability of vibrating carbon nanotubes near small layers of graphite sheets based on nonlocal continuum elasticity, Journal of Applied Mechanics and Technical Physics, 57 (2016) 90-100. otwiera się w nowej karcie
  34. Choyal, V.K., Choyal, V., Nevhal, S., Bergaley, A., Kundalwal, S.I., Effect of aspects ratio on Young's modulus of boron nitride nanotubes: A molecular dynamics study, Materials Today: Proceedings, (2019), https://doi.org/10.1016/j.matpr.2019.05.347 otwiera się w nowej karcie
  35. Ramezannejad Azarboni, H., Magneto-thermal primary frequency response analysis of carbon nanotube considering surface effect under different boundary conditions, Composites Part B: Engineering, 165 (2019) 435-441.
  36. Karami, B., Janghorban, M., On the dynamics of porous nanotubes with variable material properties and variable thickness, International Journal of Engineering Science, 136 (2019) 53-66. otwiera się w nowej karcie
  37. Zhu, B., Chen, X., Dong, Y., Li, Y., Stability analysis of cantilever carbon nanotubes subjected to partially distributed tangential force and viscoelastic foundation, Applied Mathematical Modelling, 73 (2019) 190-209. otwiera się w nowej karcie
  38. Hołubowski, R., Glabisz, W., Jarczewska, K., Transverse vibration analysis of a single-walled carbon nanotube under a random load action, Physica E, 109 (2019) 242-247. otwiera się w nowej karcie
  39. Zhen, Y.-X., Wen, S.-L., Tang, Y., Free vibration analysis of viscoelastic nanotubes under longitudinal magnetic field based on nonlocal strain gradient Timoshenko beam model, Physica E, 105 (2019) 116-124. otwiera się w nowej karcie
  40. Narendar, S., Gupta, S.S., Gopalakrishnan, S., Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler-Bernoulli beam theory, Applied Mathematical Modelling, 36 (2012) 4529-4538. otwiera się w nowej karcie
  41. Romano, G., Barretta, R., Nonlocal elasticity in nanobeams: the stress-driven integral model, International Journal of Engineering Science, 115 (2017) 14-27. otwiera się w nowej karcie
  42. Barretta, R., Canadija, M., Feo, L., et al. Exact solutions of inflected functionally graded nano-beams in integral elasticity, Composites Part B: Engineering, 142 (2018) 273-286. otwiera się w nowej karcie
  43. Barretta, R., Fabbrocino, F., Luciano, R., et al. Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nano-beams, Physica E, 97 (2018) 13-30. otwiera się w nowej karcie
  44. Wang, L., Ni, Q., Li, M., Qia, Q., The thermal effect on vibration and instability of carbon nanotubes conveying fluid, Physica E, 40 (2008) 3179-3182. otwiera się w nowej karcie
  45. Numanoğlu, H.M., Akgöz, B., Civalek, O., On dynamic analysis of nanorods, International Journal of Engineering Science, 130 (2018) 33-50. otwiera się w nowej karcie
  46. Demir, C., Civalek, O., On the analysis of microbeams, International Journal of Engineering Science, 121 (2017) 14-33. otwiera się w nowej karcie
  47. Civalek, O. Demir, C., Buckling and bending analyses of cantilever carbon nanotubes using the Euler-bernoulli beam theory based on non-local continuum model, Asian Journal of Civil Engineering, 12(5) (2011) 651-661. otwiera się w nowej karcie
  48. Civalek, O., Demir, C., Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory, Applied Mathematical Modelling, 35(5) (2011) 2053-2067. otwiera się w nowej karcie
  49. Li, L., Hu, Y., Li, X. Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory, International Journal of Mechanical Sciences, 115-116 (2016) 135-144. otwiera się w nowej karcie
  50. Barretta, R., Faghidian, S.A., Luciano, R., Longitudinal vibrations of nano-rods by stress-driven integral elasticity, Mechanics of Advanced Materials and Structures, 26(15) (2019) 1307-1315. otwiera się w nowej karcie
  51. Barretta, R., Caporale, A., Faghidian, S.A., Luciano, R., Marotti de Sciarra, F., Medaglia, C.M., A stress-driven local-nonlocal mixture model for Timoshenko nano-beams, Composites Part B: Engineering, 164 (2019) 590-598. otwiera się w nowej karcie
  52. Barretta, R., Marotti de Sciarra, F., Axial and flexional behaviour of elastic nano-beams by stress-driven two-phase elasticity, Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications - Proceedings of the 7th International Conference on Structural Engineering, Mechanics and Computation, (2019) 486-491. otwiera się w nowej karcie
  53. Barretta, R., Fabbrocino, F., Luciano, R., de Sciarra, F.M., Ruta, G., Buckling loads of nano-beams in stress-driven nonlocal elasticity, Mechanics of Advanced Materials and Structures, (2019) DOI: 10.1080/15376494.2018.1501523 otwiera się w nowej karcie
  54. Barretta, R., Faghidian, S.A., Luciano, R., Medaglia, C.M., Penna, R., Free vibrations of FG elastic Timoshenko nano-beams by strain gradient and stress-driven nonlocal models, Composites Part B: Engineering, 154 (2018) 20-32. otwiera się w nowej karcie
  55. BHashyam, G.R., Prathap, G., Galerkin finite element method for nonlinear beam vibrations, Journal of Sound and Vibration, 72 (1980) 191-203. otwiera się w nowej karcie
  56. Evensen, D.A., Nonlinear vibrations of beams with various boundary conditions, AIAA Journal, 6 (1968) 370-372. otwiera się w nowej karcie
  57. Cheng, Q., Liu, Y.S., Wang, G.C., Liu, H., Jin, M.G., Li, R., Free vibration of a fluid-conveying nanotube constructed by carbon nanotube and boron nitride nanotube, Physica E: Low-dimensional Systems and Nanostructures, 109 (2019) 183-190. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 20 razy

Publikacje, które mogą cię zainteresować

Meta Tagi