Structural and electrical transport properties of Pr-doped SrTi0.93Co0.07O3-δ a novel SOEC fuel electrode materials - Publikacja - MOST Wiedzy

Wyszukiwarka

Structural and electrical transport properties of Pr-doped SrTi0.93Co0.07O3-δ a novel SOEC fuel electrode materials

Abstrakt

Solid Oxide Electrolyzer Cells (SOECs) are very promising electrochemical devices for the production of syngas (H2/CO) by H2O and CO2 co-electrolysis. The structure, microstructure and electrical properties of the fuel electrode material play a crucial role in the performance of the whole cell and efficiency of electrocatalytic reduction of steam into hydrogen. In the present work, a novel Co and Pr co-doped SrTiO3-δ material attracted attention as a potential fuel electrode for SOFC/SOEC. Materials with different praseodymium content were prepared by a solid-state reaction process. XRD confirmed cubic perovskite structure in all obtained samples. SEM results showed porosity in doped materials and EDX proved ABO3 stoichiometry. TEC values were about 1.17–1.26•10−5 K−1 very close to the YSZ electrolyte value. XPS studies turn out that a praseodymium can be multivalent and exist on mixed +3 and + 4 oxidation state. Electrical conductivity of samples was measured by DC 4-wire method in range of 100-800 °C. Highest value of total conductivity was achieved for Sr0.7Pr0.3Ti0.93Co0.07O3-δ and reached 23.7 S∙cm−1. The obtained results were discussed and analyzed in term of defect chemistry.

Cytowania

  • 2

    CrossRef

  • 3

    Web of Science

  • 2

    Scopus

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
JOURNAL OF ELECTROCERAMICS nr 42, strony 31 - 40,
ISSN: 1385-3449
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Kamecki B., Miruszewski T., Karczewski J.: Structural and electrical transport properties of Pr-doped SrTi0.93Co0.07O3-δ a novel SOEC fuel electrode materials// JOURNAL OF ELECTROCERAMICS. -Vol. 42, (2018), s.31-40
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s10832-018-0143-0
Bibliografia: test
  1. S. Chen, K. Xie, J. Power Sources 274, 718-729 (2015) otwiera się w nowej karcie
  2. S.D. Ebbesen, C. Graves, A. Hauch, S.H. Jensen, M. Mogensen, J. Electrochem. Soc. 157(10), 1419-1429 (2010) otwiera się w nowej karcie
  3. Z. Jiao, N. Takagi, N. Shikazono, N. Kasagi, J. Power Sources 196(3), 1019-1029 (2011) otwiera się w nowej karcie
  4. Q. Qin, G. Wu, Electrochim. Acta 127, 215-227 (2014) otwiera się w nowej karcie
  5. B. Ge, J. Ma, Electrochim. Acta 151, 437-446 (2015) otwiera się w nowej karcie
  6. C. Zener, Phys. Rev. 82(3), 403-405 (1951) otwiera się w nowej karcie
  7. L.-W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Solid State Ionics 76(3-4), 259-271 (1995) otwiera się w nowej karcie
  8. K. Müller, H. Burkard, Phys. Rev. B 19(7), 3593-3602 (1979) otwiera się w nowej karcie
  9. M.C. Verbraeken, T. Ramos, K. Agersted, Q. Ma, C.D. Savaniu, B.R. Sudireddy, J.T.S. Irvine, P. Holtappels, F. Tietz, RSC Adv. 5(2), 1168-1180 (2015) otwiera się w nowej karcie
  10. S. Hui, A. Petric, J. Electrochem. Soc. 149(1), J1-J10 (2002) otwiera się w nowej karcie
  11. T. Ishihara, Springer Science Business Media, LLC (2009) 1-6; p. 168-169 otwiera się w nowej karcie
  12. S. Hui, A. Petric, J. Eur. Ceram. Soc. 22(9-10), 1673-1681 (2002) otwiera się w nowej karcie
  13. Q. Ma, F. Tietz, A. Leonide, E. Ivers-Tiffée, J. Power Sources 196(17), 7308-7312 (2011) otwiera się w nowej karcie
  14. R. Moos, W. Menesklou, H.-J. Schreiner, K.H. Härdtl, Sensors Actuators B Chem. 67(1-2), 178-183 (2000) otwiera się w nowej karcie
  15. J. Exner, M. Schubert, D. Hanft, T. Stöcker, P. Fuierer, R. Moos, Sensors Actuators B Chem. 230, 427-433 (2016) otwiera się w nowej karcie
  16. S. Suthirakun, G. Xiao, S.C. Ammal, F. Chen, H.-C. zur Loye, A. Heyden, J. Power Sources 245, 875-885 (2014) otwiera się w nowej karcie
  17. S. Suthirakun, S.C. Ammal, G. Xiao, F. Chen, F.K. Huang, H.-C. zur Loye, A. Heyden, Solid State Ionics 228, 37-45 (2012) otwiera się w nowej karcie
  18. X. Li, H. Zhao, N. Xu, X. Zhou, C. Zhang, N. Chen, Int. J. Hydrog. Energy 34(15), 6407-6414 (2009) otwiera się w nowej karcie
  19. X. Li, H. Zhao, F. Gao, Z. Zhu, N. Chen, W. Shen, Solid State Ionics 178, 1588-1592 (2008) otwiera się w nowej karcie
  20. A. Yaremchenko, J. Macías, J. Frade, V Iberian Symposium on Hydrogen, Fuel Cells and Advanced Batteries. Tenerife, España, July 05-08 (2015) p. 174-177
  21. K. Park, J. Kim, J. Bae, Solid State Ionics 272, 45-52 (2015) otwiera się w nowej karcie
  22. D.P. Fagg, V.V. Kharton, A.V. Kovalevsky, A.P. Viskup, E.N. Naumovich, J.R. Frade, J. Eur. Ceram. Soc. 21(10-11), 1831- 1835 (2001) otwiera się w nowej karcie
  23. G.S. Lewis, A. Atkinson, B.C.H. Steele, J. Mater. Sci. Lett. 20(12), 1155-1157 (2001) otwiera się w nowej karcie
  24. R.P. Vasquez, Surf. Sci. Spectra 1, 129-135 (1992) otwiera się w nowej karcie
  25. C.D. Wagner, W.M Riggs, L.E Davis, J.F. Moulder, Handbook of X-ray Photoelectron Spectroscopy. (Perkin-Elmer, 1978)
  26. H. Ogasawara, A. Kotani, R. Potze, G.A. Sawatzky, B.T. Thole, Phys. Rev. B 44(11), 5465-5469 (1991) otwiera się w nowej karcie
  27. S. Lutkehoff, M. Neumann, A. Slebarski, Phys. Rev. B 52(19), 13808-13811 (1995) otwiera się w nowej karcie
  28. L. Zhang, X. Zhua, Z. Caoa, Electrochim. Acta 232, 542-549 (2017)
  29. A. Dehkordi, S. Bhattacharya, T. Darroudi, H. Alshareef, T. Tritt, J. Appl. Phys. 117(5), 055102 (2015). https://doi.org/10.1063/1. 4905417 otwiera się w nowej karcie
  30. A.A. Yaremchenko, S.G. Patrício, J.R. Frade, J. Power Sources 245, 557-569 (2014) otwiera się w nowej karcie
  31. I.A. Sluchinskaya, A.I. Lebedev, A. Erko, J. Appl. Phys. 112(2), 024103 (2012) otwiera się w nowej karcie
  32. R.D. Shannon, Acta Cryst A32, 751-767 (1976) otwiera się w nowej karcie
  33. V. Thampi, P.R. Padala, A.N. Radhakrishnan, New J. Chem. 39(2), 1469-1476 (2015) otwiera się w nowej karcie
  34. S. Nath, I. Manna, A.K. Jha, S.C. Sharma, S.K. Pratihar, J.D. Majumdar, Ceram. Int. 43(14), 11204-11217 (2017) otwiera się w nowej karcie
  35. D.A.G. Bruggeman, Ann. Phys. 416(7), 636-664 (1935) otwiera się w nowej karcie
  36. A. Rothschild, M. Wolfgang, H.L. Tuller, E. Ivers-Tiffée, Chem. Mater. 18(16), 3651-3659 (2006) otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 18 razy

Publikacje, które mogą cię zainteresować

Meta Tagi