Study of Different Advanced Oxidation Processes for Wastewater Treatment from Petroleum Bitumen Production at Basic pH - Publikacja - MOST Wiedzy

Wyszukiwarka

Study of Different Advanced Oxidation Processes for Wastewater Treatment from Petroleum Bitumen Production at Basic pH

Abstrakt

Effluents from production of petroleum bitumens were submitted to treatment by three different AOPs at basic pH (i.e., O3, H2O2 and the combination of O3 and H2O2, a so-called peroxone). The paper presents studies on the identification and monitoring of the volatile organic compounds (VOCs) degradation present in the effluents and formation of byproducts, COD, BOD5, sulfide ions, biotoxicity, and biodegradability changes during treatment. Peroxone at 25 °C with a ratio of oxidant in relation to the COD of the effluents (rox) of 0.49 achieved 43% and 34% of COD and BOD5 reduction resulting in the most effective AOP studied. S2– ions were effectively oxidized in all technologies studied. Ozonation at 25 °C and with a rox of 0.34 was the most effective process to degrade VOCs. Decrease in the biotoxicity was reported in O3 and peroxone processes. Byproduct formation in different AOPs was reported. These reductions revealed that these technologies are effective if used as pretreatment methods.

Cytowania

  • 5 1

    CrossRef

  • 5 0

    Web of Science

  • 5 0

    Scopus

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH nr 56, wydanie 31, strony 8806 - 8814,
ISSN: 0888-5885
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Boczkaj G., Fernandes A., Makoś P.: Study of Different Advanced Oxidation Processes for Wastewater Treatment from Petroleum Bitumen Production at Basic pH// INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH. -Vol. 56, iss. 31 (2017), s.8806-8814
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1021/acs.iecr.7b01507
Bibliografia: test
  1. Boczkaj, G.; Kaminśki, M.; Przyjazny, A. Process Control and Investigation of Oxidation Kinetics of Postoxidative Effluents Using Gas Chromatography with Pulsed Flame Photometric Detection (GC- PFPD). Ind. Eng. Chem. Res. 2010, 49 (24), 12654. otwiera się w nowej karcie
  2. Boczkaj, G.; Przyjazny, A.; Kaminśki, M. New Procedures for Control of Industrial Effluents Treatment Processes. Ind. Eng. Chem. Res. 2014, 53, 1503. otwiera się w nowej karcie
  3. Stepnowski, P.; Siedlecka, E. M.; Behrend, P.; Jastorff, B. Enhanced Photo-Degradation of Contaminants in Petroleum Refinery Wastewater. Water Res. 2002, 36, 2167. otwiera się w nowej karcie
  4. Saien, J.; Shahrezaei, F. Organic Pollutants Removal from Petroleum Refinery Wastewater with Nanotitania Photocatalyst and UV Light Emission. Int. J. Photoenergy 2012, 2012, 1. otwiera się w nowej karcie
  5. Shahrezaei, F.; Mansouri, Y.; Zinatizadeh, A. A. L.; Akhbari, A. Process Modeling and Kinetic Evaluation of Petroleum Refinery Wastewater Treatment in a Photocatalytic Reactor Using TiO2 Nanoparticles. Powder Technol. 2012, 221, 203. otwiera się w nowej karcie
  6. Mota, A. L. N.; Albuquerque, L. F.; Beltrame, L. T. C.; Chiavone- Filho, O.; Machulek, A., Jr.; Nascimento, C. A. O. Advanced Oxidation Processes and Their Application in the Petroleum Industry: A Review. Brazilian J. Pet. Gas 2009, 2 (3), 122.
  7. Shahidi, D.; Roy, R.; Azzouz, A. Advances in Catalytic Oxidation of Organic Pollutants − Prospects for Thorough Mineralization by Natural Clay Catalysts. Appl. Catal., B 2015, 174−175, 277. otwiera się w nowej karcie
  8. Litter, M. Introduction to Photochemical Advanced Oxidation Processes for Water Treatment. In Environmental Photochemistry Part II; otwiera się w nowej karcie
  9. Boule, P., Bahnemann, D. W., Robertson, P. K. J., Eds.; Springer: Berlin, 2005; Vol. 2, pp 325−366. otwiera się w nowej karcie
  10. Ameta, R, Kumar, A, Punjabi, P. B., Ameta, S. C. Advanced Oxidation Processes: Basics and Principles. In Wastewater Treatment: Advanced Processes and Technologies; otwiera się w nowej karcie
  11. Rao, D. G., Senthilkumar, R., Byrne, J. A., Feroz, S., Eds.; CRC Press and IWA Publishing, 2013; pp 61−107. otwiera się w nowej karcie
  12. Oh, S.-Y.; Shin, D.-S. Treatment of Diesel-Contaminated Soil by Fenton and Persulfate Oxidation with Zero-Valent Iron. Soil Sediment Contam. 2014, 23 (2), 180. otwiera się w nowej karcie
  13. Zangeneh, H.; Zinatizadeh, a. a L.; Feizy, M. A Comparative Study on the Performance of Different Advanced Oxidation Processes (UV/O3/H2O2) Treating Linear Alkyl Benzene (LAB) Production Plant's Wastewater. J. Ind. Eng. Chem. 2014, 20 (4), 1453. otwiera się w nowej karcie
  14. Azbar, N.; Yonar, T.; Kestioglu, K. Comparison of Various Advanced Oxidation Processes and Chemical Treatment Methods for COD and Color Removal from a Polyester and Acetate Fiber Dyeing Effluent. Chemosphere 2004, 55 (1), 35. otwiera się w nowej karcie
  15. Boczkaj, G.; Fernandes, A. Wastewater Treatment by Means of Advanced Oxidation Processes at Basic pH Conditions: A Review. Chem. Eng. J. 2017, 320, 608. otwiera się w nowej karcie
  16. Kusic, H.; Koprivanac, N.; Bozic, A. L. Minimization of Organic Pollutant Content in Aqueous Solution by Means of AOPs: UV-and Ozone-Based Technologies. Chem. Eng. J. 2006, 123 (3), 127. (15) Esplugas, S.; Gimeńez, J.; Contreras, S.; Pascual, E.; Rodríguez, M. Comparison of Different Advanced Oxidation Processes for Phenol Degradation. Water Res. 2002, 36 (4), 1034. otwiera się w nowej karcie
  17. Chandrasekara Pillai, K.; Kwon, T. O.; Moon, I. S. Degradation of Wastewater from Terephthalic Acid Manufacturing Process by Ozonation Catalyzed with Fe2+, H2O2 and UV Light: Direct versus Indirect Ozonation Reactions. Appl. Catal., B 2009, 91 (1−2), 319. otwiera się w nowej karcie
  18. Abu Amr, S. S.; Aziz, H. A.; Adlan, M. N. Optimization of Stabilized Leachate Treatment Using Ozone/persulfate in the Advanced Oxidation Process. Waste Manage. 2013, 33 (6), 1434. (18) Meńdez-Arriaga, F.; Otsu, T.; Oyama, T.; Gimenez, J.; Esplugas, S.; Hidaka, H.; Serpone, N. Photooxidation of the Antidepressant Drug Fluoxetine (Prozac®) in Aqueous Media by Hybrid Catalytic/ ozonation Processes. Water Res. 2011, 45 (9), 2782.
  19. Poyatos, J. M.; Munĩo, M. M.; Almecija, M. C.; Torres, J. C.; Hontoria, E.; Osorio, F. Advanced Oxidation Processes for Wastewater Treatment: State of the Art. Water, Air, Soil Pollut. 2010, 205 (1−4), 187. otwiera się w nowej karcie
  20. Hernandez, R.; Zappi, M.; Colucci, J.; Jones, R. Comparing the Performance of Various Advanced Oxidation Processes for Treatment of Acetone Contaminated Water. J. Hazard. Mater. 2002, 92 (1), 33. (21) Garoma, T.; Gurol, M. D.; Osibodu, O.; Thotakura, L. Treatment of Groundwater Contaminated with Gasoline Components by an ozone/UV Process. Chemosphere 2008, 73 (5), 825.
  21. Katsoyiannis, I. A.; Canonica, S.; von Gunten, U. Efficiency and Energy Requirements for the Transformation of Organic Micro- pollutants by Ozone, O3/H2O2 and UV/H2O2. Water Res. 2011, 45 (13), 3811. otwiera się w nowej karcie
  22. Popiel, S.; Nalepa, T.; Dzierzak, D.; Stankiewicz, R.; Witkiewicz, Z. Rate of Dibutylsulfide Decomposition by Ozonation and the O3/ H2O2 Advanced Oxidation Process. J. Hazard. Mater. 2009, 164 (2− 3), 1364. otwiera się w nowej karcie
  23. Alaton, I. A.; Balcioglu, I. A.; Bahnemann, D. W. Advanced Oxidation of a Reactive Dyebath Effluent: Comparison of O3, H2O2/ UV-C and TiO2/UV-A Processes. Water Res. 2002, 36 (5), 1143. (25) Coelho, A.; Castro, A. V.; Dezotti, M.; Sant'Anna, G. L. Treatment of Petroleum Refinery Sourwater by Advanced Oxidation Processes. J. Hazard. Mater. 2006, 137 (1), 178. (26) Sharma, J.; Mishra, I. M.; Kumar, V. Degradation and Mineralization of Bisphenol A (BPA) in Aqueous Solution Using Advanced Oxidation Processes: UV/H2O2 and and UV = S2O82- Oxidation Systems. J. Environ. Manage. 2015, 156, 266. otwiera się w nowej karcie
  24. Weng, C.-H.; Tao, H. Highly Efficient Persulfate Oxidation Process Activated with Fe0 Aggregate for Decolorization of Reactive Azo Dye Remazol Golden Yellow. Arabian J. Chem. 2015, 0. otwiera się w nowej karcie
  25. Spalek, O.; Balej, J.; Paseka, I. Kinetics of the Decomposition of Hydrogen Peroxide in Alkaline Solutions. J. Chem. Soc., Faraday Trans. 1 1982, 78 (8), 2349. otwiera się w nowej karcie
  26. Safarzadeh-Amiri, A. O3/H2O2 Treatment of Methyl-Tert- Butyl Ether (MTBE) in Contaminated Waters. Water Res. 2001, 35 (15), 3706. otwiera się w nowej karcie
  27. Wu, J. J.; Muruganandham, M.; Chen, S. H. Degradation of DMSO by Ozone-Based Advanced Oxidation Processes. J. Hazard. Mater. 2007, 149 (1), 218. otwiera się w nowej karcie
  28. Alsheyab, M. A.; Munõz, A. H. Reducing the Formation of Trihalomethanes (THMs) by Ozone Combined with Hydrogen Peroxide (H2O2/O3). Desalination 2006, 194 (1−3), 121. (32) Water quality  Determination of biochemical oxygen demand after n days (BODn). International Standard ISO 5815-1, 2003. (33) Boczkaj, G.; Makos, P.; Przyjazny, A. Application of Dispersive Liquid-Liquid Microextraction and Gas Chromatography-Mass Spec- trometry (DLLME-GC-MS) for the Determination of Oxygenated Volatile Organic Compounds in Effluents from the Production of Petroleum Bitumen. J. Sep. Sci. 2016, 39 (13), 2604. (34) Boczkaj, G.; Makos, P.; Fernandes, A.; Przyjazny, A. New Procedure for the Control of the Treatment of Industrial Effluents to Remove Volatile Organosulfur Compounds. J. Sep. Sci. 2016, 39 (20), 3946.
  29. Boczkaj, G.; Makos, P.; Fernandes, A.; Przyjazny, A. New Procedure for the Examination of the Degradation of Volatile Organonitrogen Compounds during the Treatment of Industrial Effluents. J. Sep. Sci. 2017, 40, 1301. otwiera się w nowej karcie
  30. Christensen, H.; Sehested, K.; Corfitzen, H. Reactions of Hydroxyl Radicals with Hydrogen Peroxide at Ambient and Elevated Temperatures. J. Phys. Chem. 1982, 86 (9), 1588. otwiera się w nowej karcie
  31. Yang, S.; Wang, P.; Yang, X.; Shan, L.; Zhang, W.; Shao, X.; Niu, R. Degradation Efficiencies of Azo Dye Acid Orange 7 by the Interaction of Heat, UV and Anions with Common Oxidants: Persulfate, Peroxymonosulfate and Hydrogen Peroxide. J. Hazard. Mater. 2010, 179 (1−3), 552. otwiera się w nowej karcie
  32. Lucas, M. S.; Peres, J. A.; Li Puma, G. Treatment of Winery Wastewater by Ozone-Based Advanced Oxidation Processes (O3, O3/ UV and O3/UV/H2O2) in a Pilot-Scale Bubble Column Reactor and Process Economics. Sep. Purif. Technol. 2010, 72 (3), 235. (39) Gimeno, O.; Rivas, F. J.; Beltrań, F. J.; Carbajo, M. Photocatalytic Ozonation of Winery Wastewaters. J. Agric. Food Chem. 2007, 55 (24), 9944. otwiera się w nowej karcie
  33. Staehelin, J.; Hoigne, J. Decomposition of Ozone in Water: Rate of Initiation by Hydroxide Ions and Hydrogen Peroxide. Environ. Sci. Technol. 1982, 16 (40), 676. otwiera się w nowej karcie
  34. Samudro, G.; Mangkoedihardjo, S. Review on Bod, Cod and Bod/Cod Ratio: A Triangle Zone for Toxic, Biodegradable and Stable Levels. international journal of academic research 2010, 2 (4), 235.
  35. Qureshi, A. A.; Bulich, A. A.; Isenberg, D. L. Microtox ® Toxicity Test Systems: Where They Stand Today. In Microscale Testing in Aquatic Toxicology: Advances, Techniques, and Practice; Wells, P. G., Lee, K., Blaise, C., Eds.; CRC Press: Boca Raton, FL, 1998; p 186. (43) Hawari, A.; Ramadan, H.; Abu-Reesh, I.; Ouederni, M. A Comparative Study of the Treatment of Ethylene Plant Spent Caustic by Neutralization and Classical and Advanced Oxidation. J. Environ. Manage. 2015, 151, 105. (44) Mahamuni, N. N.; Adewuyi, Y. G. Advanced Oxidation Processes (AOPs) Involving Ultrasound for Waste Water Treatment: A Review with Emphasis on Cost Estimation. Ultrason. Sonochem. 2010, 17 (6), 990.
  36. Treatment Technologies for Removal of Methyl Tertiary Butyl Ether (MTBE) from Drinking Water, 2nd ed.; Melin, G., Eds.; NWRI-99-06; otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 44 razy

Publikacje, które mogą cię zainteresować

Meta Tagi