Study on applicability of two modal identification techniques in irrelevant cases - Publikacja - MOST Wiedzy

Wyszukiwarka

Study on applicability of two modal identification techniques in irrelevant cases

Abstrakt

Study on applicability of two modal identification techniques in irrelevant cases is made in this paper. The following techniques are considered: Peak Picking based on correlation analysis (PP-CA), dedicated for ambient vibrations and Eigensystem Realization Algorithm (ERA), formulated for free decay vibrations investigation. Irrelevant cases are found when analyzed signals are different than recommended to a given technique. The study is conducted on examples of two real structures: masonry tower and steel railway bridge. Both cases are diverse in age, material, excitation and vibrations energy. The signals measured on the tower are suitable for the PP-CA technique (ambient vibrations), while the signals measured on the bridge are suitable for the ERA (free decay vibrations). However, both methods have been applied to both systems. Natural frequencies, mode shapes and damping ratios are identified and the effectiveness of the irrelevant technique is assessed in relation to the results obtained by the relevant method in each case.

Cytowania

  • 4

    CrossRef

  • 5

    Web of Science

  • 5

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 12 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Archives of Civil and Mechanical Engineering nr 20, strony 1 - 11,
ISSN: 1644-9665
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Tomaszewska A., Szafrański M.: Study on applicability of two modal identification techniques in irrelevant cases// Archives of Civil and Mechanical Engineering -Vol. 20,iss. 13 (2020), s.1-11
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s43452-020-0014-8
Bibliografia: test
  1. Maia NMM, Silva JMM. Theoretical and experimental modal analy- sis. Baldock: Research Studies Press Ltd.; 1997. otwiera się w nowej karcie
  2. Zhang L. An overview of major developments and issues in modal identification. In: Proceedings of 22nd international modal analysis conference (IMAC), Detroit; 2004.
  3. Bendat J, Piersol A. Engineering applications of correlation and spectral analysis. New York: Wiley; 1980.
  4. Zwolski J, Bień J. Modal analysis of bridge structures by means of forced vibration tests. J Civ Eng Manag. 2011;17(4):590-9. otwiera się w nowej karcie
  5. Gazzani V, Poiani M, Clementi F, Milani G, Lenci S. Modal param- eters identification with environmental tests and advanced numerical analyses for masonry bell towers: a meaningful case study. Procedia Struct Integr. 2018;11:306-13. otwiera się w nowej karcie
  6. Brownjohn JMW. Ambient vibration studies for system identifica- tion of tall buildings. Earthq Eng Struct D. 2003;25:1-25. otwiera się w nowej karcie
  7. Chen G, Omenzetter P, Beskhyroun S. Operational modal analysis of an eleven-span concrete bridge subjected to weak ambient excita- tions. Eng Struct. 2017;151:839-60. otwiera się w nowej karcie
  8. Bień J, Kużawa M, Kamiński T. Validation of numerical models of concrete box bridges based on load test results. Arch Civ Mech Eng. 2015;15:1046-60. otwiera się w nowej karcie
  9. Nayeri RD, Tasbihgoo F, Wahbeh M, Caffrey JP, Masri SF, Conte JP, Elgamal A. Study of time-domain techniques for modal parameter identification of a long suspension bridge with dense sensor arrays. J Eng Mech. 2009;135:669-83. otwiera się w nowej karcie
  10. Szafrański M. Dynamics of the small-span railway bridge under moving loads. In: MATEC Web conference 2019, vol. 262, no 10014, pp 1-8. otwiera się w nowej karcie
  11. Poprawa G, Salamak M, Pradelok S, Łaziński P. Operational modal analysis in model updating of a truss railway bridge. In: Proceed- ings of 7th international operational modal analysis conference (IOMAC), Ingolstadt; 2017. pp. 9-18. otwiera się w nowej karcie
  12. Stutz LT, Rangel ICSS, Rangel LS, Corrêa RAP, Knupp DC. Struc- tural damage identification built on a response surface model and the flexibility matrix. J Sound Vib. 2018;434:284-97. otwiera się w nowej karcie
  13. Tomaszewska A. Influence of statistical errors on damage detection based on structural flexibility and mode shape curvature. Comput Struct. 2010;88:154-64. otwiera się w nowej karcie
  14. Juang JN, Pappa RS. An eigensystem realization algorithm for modal parameter identification and model reduction. J Guid Control Dyn. 1985;8:620-7. otwiera się w nowej karcie
  15. Hollkamp JJ, Gordon RW. Modal test experiences with a jet engine fan model. J Sound Vib. 2001;248:151-65. otwiera się w nowej karcie
  16. Rusinski E, Dragan S, Moczko P, Pietrusiak D. Implementation of experimental method of determining modal characteristics of sur- face mining machinery in the modernization of the excavating unit. Arch Civ Mech Eng. 2012;12:471-6. otwiera się w nowej karcie
  17. Bernagozzi G, Mukhopadhyay S, Betti R, Landi L, Diotallevi PP. Output-only damage detection in buildings using proportional modal flexibility-based deflections in unknown mass scenarios. Eng Struct. 2018;167:549-66. otwiera się w nowej karcie
  18. Alvin KF, Robertson AN, Reich GW, Park KC. Structural sys- tem identification: from reality to models. Comput Struct. 2003;81:1149-76. otwiera się w nowej karcie
  19. Juang JN. Applied system identification. New Jersey: Prentice-Hall PTR; 1994. otwiera się w nowej karcie
  20. Bendat J. Statistical errors in measurement of coherence functions and input/output quantities. J Sound Vib. 1978;59:405-21. otwiera się w nowej karcie
  21. Taylor JR. An Introduction to error analysis: the study of uncertain- ties in physical measurements. 2nd ed. Sausalito: University Science Books; 1997.
  22. Tomaszewska A, Szymczak C. Identification of the Vistula Mounting tower model using measured modal data. Eng Struct. 2012;42:342-8. otwiera się w nowej karcie
  23. Bull JW. Computational modelling of masonry, brickwork and blockwork structures. Stirling: Saxe-Coburg Publications; 2001.
  24. Bayraktar A, Türker T, Sevim B, Altunisik AC, Yildirim F. Modal parameter identification of Hagia Sophia bell-tower via ambient vibration test. J Nondestruct Eval. 2009;28:37-47. otwiera się w nowej karcie
  25. Bru D, Ivorra S, Betti M, Adam JM, Bartoli G. Parametric dynamic interaction assessment between bells and supporting slender masonry tower. Mech Syst Signal Process. 2019;129:235-49. otwiera się w nowej karcie
  26. Vincenzi L, Bassoli E, Ponsi F, Castagnetti C, Mancini F. Dynamic monitoring and evaluation of bell ringing effects for the structural assessment of a masonry bell tower. J Civ Struct Health Monit. 2019;9:439-58. otwiera się w nowej karcie
  27. Zanotti Fragonara L, Boscato G, Ceravolo R, Russo S, Ientile S, Pecorelli ML, Quattrone A. Dynamic investigation on the
  28. Mirandola bell tower in post-earthquake scenarios. Bull Earthq Eng. 2017;15:313-37. otwiera się w nowej karcie
  29. Pandey AK, Biswas M, Samman MM. Damage detection from changes in curvature mode shapes. J Sound Vib. 1991;145:321-32. otwiera się w nowej karcie
  30. Clementi F, Pierdicca A, Formisano A, Catinari F, Lenci S. Numeri- cal model upgrading of a historical masonry building damaged dur- ing the 2016 Italian earthquakes: the case study of the Podesta palace in Montelupone (Italy). J Civ Struct Health Monit. 2017;7:703-17. otwiera się w nowej karcie
  31. Szafrański M. Dynamic analysis of the railway bridge span under moving loads. Roads and Bridges (Drogi i Mosty). 2018;17:299-316. otwiera się w nowej karcie
  32. Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 55 razy

Publikacje, które mogą cię zainteresować

Meta Tagi