Study on population dynamics for triple-linked food chain using a simulation-based approach - Publikacja - MOST Wiedzy

Wyszukiwarka

Study on population dynamics for triple-linked food chain using a simulation-based approach

Abstrakt

The procedures based on simulation have become a feasible testing method that does not require investing valuable resources to create a concrete prototype, especially with the increasing computational power of computers. Thus, design changes can be adopted and design errors can be fixed before it is too late. Simulation turns to be a cheap, safe and often more acceptable from an ethical perspective. In our work we summarize the results from the analysis with the help of a computational simulation of an elementary, yet analytically intractable problem scenario from the field of ecology. Our main goal is to confirm that even with a seemingly simple agent-based model and simulation, one could obtain plausible results regarding a system's real life behavior. As a last point, we propose an efficient alternative for analysis, rather than the expensive simulation process.

Cytowania

  • 1

    CrossRef

  • 1

    Web of Science

  • 1

    Scopus

Autorzy (4)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 26 razy
Wersja publikacji
Submitted Version
Licencja
Copyright (Springer-Verlag GmbH Germany, part of Springer Nature 2019)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Evolving Systems nr 11, strony 215 - 226,
ISSN: 1868-6478
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Balabanov K., Cejrowski T., Logofătu D., Bădică C.: Study on population dynamics for triple-linked food chain using a simulation-based approach// Evolving Systems. -Vol. 11, (2019), s.215-226
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s12530-019-09298-1
Bibliografia: test
  1. Angelov, P., Kasabov, N.: Evolving computational intelligence systems. In: Proc. 1st International Workshop on Genetic Fuzzy Systems, pp. 76-82, (2005)
  2. Angelov, P., Kasabov, N.: Evolving intelligent systems, eIS. In: IEEE SMC eNewsLetter, 15, pp. 1-13, (2006) otwiera się w nowej karcie
  3. Angelov, P.: Outside the box: an alternative data analytics framework. In: Journal of Automation Mobile Robotics and Intelligent Systems, 8(2), pp. 29-35, (2014) otwiera się w nowej karcie
  4. Bȃdicȃ, A., Bȃdicȃ, C., Ivanović, M., & Dȃnciulescu, D.: Multi-agent modelling and simulation of graphbased predatorprey dynamic systems: A BDI approach. In: Expert Systems, 35(5), exsy12263. (2018)
  5. Balabanov, K., Fietz, R. G., Logofȃtu, D.: Considerations in Analyzing Ecological Depen- dent Populations in a Changing Environment. In: Computational Collective Intelligence, pp. 223-232, vol 10448, Part I (September), Nicosia (2017) otwiera się w nowej karcie
  6. Balabanov K., Logofȃtu D., Badica C., Leon F., A Simulation-Based Analysis of Interde- pendent Populations in a Dynamic Ecological Environment. In: Iliadis L., Maglogiannis I., Plagianakos V. (eds) Artificial Intelligence Applications and Innovations. AIAI 2018. IFIP Advances in Information and Communication Technology, vol 519, pp. 437-448, Springer, Cham (2018) otwiera się w nowej karcie
  7. Begon, M., Mortimer, M., Thompson, D. J.: Population Ecology: A Unified Study of Animals and Plants, 3rd ed, [Online]: Wiley-Blackwell (1996)
  8. Canyameres S., Logofȃtu D.: Platform for Simulation and Improvement of Swarm Be- havior in Changing Environments. In: Iliadis L., Maglogiannis I., Papadopoulos H. (eds) Artificial Intelligence Applications and Innovations. AIAI 2014. IFIP Advances in Infor- mation and Communication Technology, vol 436, pp. 121-129, Springer, Berlin, Heidelberg (2014) otwiera się w nowej karcie
  9. Cejrowski, T., Szymaski, J., Mora, H., Gil, D.: Detection of the Bee Queen Presence Using Sound Analysis, Asian Conference on Intelligent Information and Database Systems, pp. 297-306, Springer, Cham (2018) otwiera się w nowej karcie
  10. Dewdney, A. K.: Sharks and fish Wage an ecological War on the toroidal planet Wa-Tor, Scientific American, pp. 14-22, 251 (December), (1984) otwiera się w nowej karcie
  11. DiStefano III, J.: Dynamic Systems Biology Modeling and Simulation. 1st ed., Academic Press, Cambridge (January), pp. 21-23, (2015) otwiera się w nowej karcie
  12. Dougoud, M., Vinckenbosch, L., Rohr, R. P., Bersier, L.-F., Mazza, C.: The feasibility of equilibria in large ecosystems: A primary but neglected concept in the complexity-stability debate, PLoS Comput Biol 14(2), pp. 1-18, (2018) otwiera się w nowej karcie
  13. Eiben, A. E., Smith, J. E.: Introduction to evolutionary computing. 2nd ed. Springer, Heidelberg (2015) otwiera się w nowej karcie
  14. F-Droid, Wa-Tor -A simple population dynamics simulator, mobile application, https://f-droid.org/en/packages/com.dirkgassen.wator, April, (2016), last accessed: 06.11.2018
  15. Farge, M.: Numerical experimentation: A third way to study nature. In: Frontiers of Computational Science. Proceedings of the International Symposium on Frontiers of Com- putational Science 2005, pp. 15-30. Springer-Verlag, Berlin (2007) otwiera się w nowej karcie
  16. Floreano, D., Mattiussi, C.: Bio-inspired artificial intelligence : theories, methods, and technologies. MIT Press, Cambridge (2008)
  17. Hogeweg, P., Hesper, B.: The ontogeny of the interaction structure in bumble bee colonies: a MIRROR model, Behavioral Ecology and Sociobiology, 12(4), pp. 271-283, (1983) otwiera się w nowej karcie
  18. Hyde, R., Angelov, P., MacKenzie, A. R.: Fully online clustering of evolving data streams into arbitrarily shaped clusters. Information Sciences, 382, pp. 96-114, (2017) otwiera się w nowej karcie
  19. Gardner, M: The fantastic combinations of John Conway's new solitaire game "life". In: Scientific American, pp. 120-123, 223 (April), (1970) otwiera się w nowej karcie
  20. Gardner, M.: On cellular automata, self-reproduction, the Garden of Eden and the game "life". In: Scientific American, pp. 112-117, 224 (February), (1971) otwiera się w nowej karcie
  21. Gerdes, I., Klawonn, F., Kruse, R.: Evolutionäre Algorithmen : genetische Algorithmen - Strategien und Optimierungsverfahren -Beispielanwendungen. Vieweg, Wiesbaden (2004) otwiera się w nowej karcie
  22. Harold, F. M.: The Way of the Cell. Oxford University Press, Oxford (2001)
  23. Hooper, D. U., Chapin III, F. S., Ewel, J. J., Hector, A., Inchausti., P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A. J., Vandermeer, J., Wardle, D. A.: Effects of Biodiversity on Ecosystem Functioning: a Consensus of Current Knowledge In: Ecological Monographs, pp. 3-35 (February), (2005) otwiera się w nowej karcie
  24. Hoppensteadt, F.: Predator-prey model. In: Scholarpedia, pp. 1563, 1 (October), (2006) otwiera się w nowej karcie
  25. Huang, Z., D. V. Rosowsky, P. R. Sparks, Hurricane simulation techniques for the evaluation of wind-speeds and expected insurance losses, Journal of wind engineering and industrial aerodynamics 89.7-8, pp. 605-617, (2001) otwiera się w nowej karcie
  26. Jafelice, R. M., da Silva, P. N.: Studies on Population Dynamics Using Cellular Au- tomata, In Cellular Automata-Simplicity Behind Complexity. InTech., (2011)
  27. Khoury, D. S., Myerscough, M. R., Barron, A. B.: A Quantitative Model of Honey Bee Colony Population Dynamics. In PLoS ONE 6(4): e18491. doi:10.1371/journal.pone. 0018491 (2011), last accessed: 06.11.2018 otwiera się w nowej karcie
  28. Law, A. M.: Simulation modeling and analysis. McGraw-Hill Higher Education, New York (1997)
  29. Logofȃtu, D., Sobol, G., Stamate, D., Balabanov, K.: A Novel Space Filling based Ap- proach to PSO Algorithms for Autonomous Agents. In: Computational Collective Intelli- gence, pp. 361-370, vol 10448, Part I (September), Nicosia (2017) otwiera się w nowej karcie
  30. Logofȃtu, D., Sobol, G., Andersson, C., Stamate, D., Balabanov, K., Cejrowski, T., Particle swarm optimization algorithms for autonomous robots with deterministic leaders using space filling movements. In: Evolving Systems, pp. 1-14 (2018) otwiera się w nowej karcie
  31. Mallet, D. G., De Pillis, L. G.: A cellular automata model of tumorimmune system interactions. In Journal of Theoretical Biology, pp. 334-350, vol 239, Issue 3, April, (2006) otwiera się w nowej karcie
  32. Masuch, M., Hartman, K., Schuster, G.: Emotional agents for interactive environments. In Creating, Connecting and Collaborating through Computing. Fourth IEEE Interna- tional Conference on Creating, Connecting and Collaborating through Computing (C5'06), pp. 96-102, January, Berkeley (2006) otwiera się w nowej karcie
  33. Max Strauch, Modeling and Simulation, Cute simulations, https://maxstrauch. github.io/projects/mod-sim/index.html, last accessed: 06.11.2018 otwiera się w nowej karcie
  34. McCann, K. S.: The diversity-stability debate, Nature, vol 405, pp. 228-233 (2000) otwiera się w nowej karcie
  35. Michalewicz, Z.: Genetic algorithms + data structures := evolution programs., 3rd ed., Springer, Berlin (2008) otwiera się w nowej karcie
  36. Norris, J. S.: Mission-critical development with open source software: lessons learned. In: IEEE Software, pp. 42-49, 21 (January), (2004) otwiera się w nowej karcie
  37. Power, D. A., Watson, R. A., Szathmáry, E., Mills, R., Powers, S. T., Doncaster, C. P., Czapp, B.: What can ecosystems learn? Expanding evolutionary ecology with learning theory, Biology Direct, pp. 1-24, (2015) otwiera się w nowej karcie
  38. Reynolds, C. W.: Flocks, herds and schools: A distributed behavioral model. In ACM SIGGRAPH computer graphics, vol 21, No. 4 (August), pp. 25-34, (1987) otwiera się w nowej karcie
  39. Rédei, M.: John von Neumann: Selected letters. RI: American Mathematical Society, Providence (2005) otwiera się w nowej karcie
  40. Southwood, T. R. E., Henderson, P. A.: Ecological methods. Wiley-Blackwell, 4th ed., pp. 29-31, (2016) otwiera się w nowej karcie
  41. Tilman, D., Reich, P. B., Knops, J. M. H.: Biodiversity and ecosystem stability in a decade-long grassland experiment, Nature, vol 441, pp. 629-632 (2006) otwiera się w nowej karcie
  42. Tschirhart, J: General Equilibrium of an Ecosystem, Journal of Theoretical Biology, pp. 1-41, (2000) otwiera się w nowej karcie
  43. Ulam, S. M.: Adventures of a Mathematician. Scribner, New York (1976) otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 50 razy

Publikacje, które mogą cię zainteresować

Meta Tagi