Support for Employees with ASD in the Workplace Using a Bluetooth Skin Resistance Sensor–A Preliminary Study - Publikacja - MOST Wiedzy

Wyszukiwarka

Support for Employees with ASD in the Workplace Using a Bluetooth Skin Resistance Sensor–A Preliminary Study

Abstrakt

The application of a Bluetooth skin resistance sensor in assisting people with Autism Spectrum Disorders (ASD), in their day-to-day work, is presented in this paper. The design and construction of the device are discussed. The authors have considered the best placement of the sensor, on the body, to gain the most accurate readings of user stress levels, under various conditions. Trial tests were performed on a group of sixteen people to verify the correct functioning of the device. Resistance levels were compared to those from the reference system. The placement of the sensor has also been determined, based on wearer convenience. With the Bluetooth Low Energy block, users can be notified immediately about their abnormal stress levels via a smartphone application. This can help people with ASD, and those who work with them, to facilitate stress control and make necessary adjustments to their work environment.

Cytowania

  • 8

    CrossRef

  • 8

    Web of Science

  • 7

    Scopus

Cytuj jako

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
SENSORS nr 18(10), strony 1 - 14,
ISSN: 1424-8220
Rok wydania:
2018
Opis bibliograficzny:
Tomczak M., Wójcikowski M., Listewnik P., Pankiewicz B., Majchrowicz D., Jędrzejewska-Szczerska M.: Support for Employees with ASD in the Workplace Using a Bluetooth Skin Resistance Sensor–A Preliminary Study// SENSORS. -Vol. 18(10), nr. 3530 (2018), s.1-14
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/s18103530
Bibliografia: test
  1. Shore, L.M.; Chung-Herrera, B.G.; Dean, M.A.; Holcombe Ehrhart, K.; Jung, D.I.; Randel, A.E.; Singh, G. Diversity in organizations: Where are we now and where are we going? Hum. Resour. Manag. Rev. 2009, 19, 117-133. [CrossRef] otwiera się w nowej karcie
  2. Roberge, M.-É.; Van Dick, R. Recognizing the benefits of diversity: When and how does diversity increase group performance? Hum. Resour. Manag. Rev. 2010, 20, 295-308. [CrossRef] otwiera się w nowej karcie
  3. McLaughlin, M.E.; Bell, M.P.; Stringer, D.Y. Stigma and acceptance of persons with disabilities. Group Organ. Manag. 2004, 29, 302-333. [CrossRef] otwiera się w nowej karcie
  4. Jones, G.E. Advancement opportunity issues for persons with disabilities. Hum. Resour. Manag. Rev. 1997, 7, 56-76. [CrossRef] otwiera się w nowej karcie
  5. Ismaili, J.; Ouazzani Ibrahimi, E.H. Mobile learning as alternative to assistive technology devices for special needs students. Educ. Inf. Technol. 2016, 22, 883-899. [CrossRef] otwiera się w nowej karcie
  6. Wang, S. How Autism Can Help You Land a Job. The Wall Street Journal. 27 March 2016. Available online: https://www.conductdisorders.com/community/threads/how-autism-can-help-you- land-a-job-wall-street-journal.56748/ (accessed on 2 January 2018). otwiera się w nowej karcie
  7. Holland, R. Neurodiversity: The Benefits of Recruiting Employees with Cognitive Disabilities. Harvard Business School Working Knowledge. 11 July 2016. Available online: https://hbswk.hbs. edu/item/neurodiversity-the-benefits-of-recruiting-employees-with-cognitive-disabilities (accessed on 2 January 2018).
  8. Jones, K. Autistic Employees Can Give Companies an Edge in Innovative Thinking. The Guardian. 17 October 2016. Available online: https://www.theguardian.com/sustainable-business/2016/oct/17/ autistic-employees-can-give-companies-an-edge-in-innovative-thinking (accessed on 2 January 2018).
  9. Pisano, G.P.; Austin, R.D. SAP SE: Autism at Work; Harvard Business School Case Study 616-042;
  10. Hendricks, D.R. Employment and adults with autism spectrum disorders: Challenges and strategies for success. J. Vocat. Rehabil. 2010, 32, 125-134. otwiera się w nowej karcie
  11. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; American Psychiatric Association: Washington, DC, USA, 2000. otwiera się w nowej karcie
  12. Fulceri, F.; Tonacci, A.; Lucaferro, A.; Apicella, F.; Narzisi, A.; Vincenti, G.; Muratori, G.; Contaldo, A. Interpersonal motor coordination during joint actions in children with and without autism spectrum disorder: The role of motor information. Res. Dev. Disabil. 2018, 80, 13-23. [CrossRef] [PubMed] otwiera się w nowej karcie
  13. Toth, K.; Munson, J.; Meltzoff, A.N.; Dawson, G. Early predictors of communication development in young children with autism spectrum disorder: Joint attention, imitation, and toy play. J. Autism Dev. Disord. 2006, 36, 993-1005. [CrossRef] [PubMed] otwiera się w nowej karcie
  14. Colombi, C.; Liebal, K.; Tomasello, M.; Young, G.; Warneken, F.; Rogers, S.J. Examining correlates of cooperation in autism: Imitation, joint attention, and understanding intentions. Autism Int. J. Res. Pract. 2009, 13, 143-163. [CrossRef] [PubMed] otwiera się w nowej karcie
  15. Billeci, L.; Narzisi, A.; Tonacci, A.; Sbriscia-Fioretti, B.; Serasini, L.; Fulceri, F.; Apicella, F.; Sicca, F.; Calderoni, S.; Muratori, F. An integrated EEG and eye-tracking approach for the study of responding and initiating joint attention in Autism Spectrum Disorders. Sci. Rep. 2017, 7, 13560. [CrossRef] [PubMed] otwiera się w nowej karcie
  16. Mundy, P.; Gomes, A. Individual differences in joint attention skill development in the second year. Infant Behav. Dev. 1998, 21, 469-482. [CrossRef] otwiera się w nowej karcie
  17. Ikeda, E.; Hinckson, H.; Crageloh, C. Assessment of quality of life in children and youth with autism spectrum disorder: A critical review. Qual. Life Res. 2014, 23, 1069-1085. [CrossRef] [PubMed] otwiera się w nowej karcie
  18. Schroeder, J.; Cappadocia, M.; Bebko, J.; Pepler, D.; Weiss, J. Shedding light on a pervasive problem: A review of research on bullying experiences among children with autism spectrum disorders. J. Autism Dev. Disord. 2014, 44, 1520-1534. [CrossRef] [PubMed] otwiera się w nowej karcie
  19. Howlin, P.H.; Moss, P. Adults with Autism Spectrum Disorders. Can. J. Psychiatry 2012, 57, 275-283. [CrossRef] [PubMed] otwiera się w nowej karcie
  20. Ohl, A.; Sheff, M.G.; Little, S.; Nguyen, J.; Paskor, K.; Zanjirian, A. Predictors of employment status among adults with Autism Spectrum Disorder. Work 2017, 56, 345-355. [CrossRef] [PubMed] otwiera się w nowej karcie
  21. Morris, M.R.; Begel, A.; Wiedermann, B. Understanding the Challenges Faced by Neurodiverse Software Engineering Employees: Towards a More Inclusive and Productive Technical Workforce. In Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility (ASSETS '15), Lisbon, Portugal, 26-28 October 2015. [CrossRef] otwiera się w nowej karcie
  22. Cabibihan, J.J.; Javed, H.; Aldosari, M.; Frazier, T.W.; Elbashir, H. Sensing Technologies for Autism Spectrum Disorder Screening and Intervention. Sensors 2017, 17, 46. [CrossRef] [PubMed] otwiera się w nowej karcie
  23. DiPalma, S.; Tonacci, A.; Narzisi, A.; Domenici, C.; Pioggia, G.; Muratori, F.; Billeci, L.; The MICHELANGELO Study Group. Monitoring of autonomic response to sociocognitive tasks during treatment in children with Autism Spectrum Disorders by wearable technologies: A feasibility study. Comput. Biol. Med. 2017, 85, 143-152. [CrossRef] [PubMed] otwiera się w nowej karcie
  24. Billeci, L.; Tonacci, A.; Narzisi, A.; Manigrasso, Z.; Varanini, M.; Fulceri, F.; Lattarulo, C.; Calderoni, S.; Muratori, F. Heart Rate Variability during a Joint Attention Task in Toddlers with Autism Spectrum Disorders. Front. Physiol. 2018, 9, 467. [CrossRef] [PubMed] otwiera się w nowej karcie
  25. Burke, R.V.; Andersen, M.N.; Bowen, S.L.; Howard, M.R.; Allen, K.D. Evaluation of two instruction methods to increase employment options for adults with autism spectrum disorders. Res. Dev. Disabil. 2010, 31, 1223-1233. [CrossRef] [PubMed] otwiera się w nowej karcie
  26. Fletcher, R.R.; Dobson, K.; Goodwin, M.S.; Eydgahi, H.; Wilder-Smith, O.; Fernholz, D.; Kuboyama, Y.; Hedman, E.B.; Poh, M.Z.; Picard, R.W. iCalm: Wearable sensor and network architecture for wirelessly communicating and logging autonomic activity. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 215-223. [CrossRef] [PubMed] otwiera się w nowej karcie
  27. McCarthy, C.; Pradhan, N.; Redpath, C.; Adler, A. Validation of the Empatica E4Wristband. In Proceedings of the 2016 IEEE EMBS International Student Conference (ISC), Ottawa, ON, Canada, 29-31 May 2016; pp. 1-4. otwiera się w nowej karcie
  28. Jędrzejewska-Szczerska, M.; Karpienko, K.; Landowska, A. System supporting behavioral therapy for children with autism. J. Innov. Opt. Health Sci. 2015, 8. [CrossRef] otwiera się w nowej karcie
  29. Landowska, A.; Karpienko, K.; Wróbel, M.; Jędrzejewska-Szczerska, M. Selection of physiological parameters for optoelectronic system supporting behavioral therapy of autistic children. Proc. SPIE 2014, 9290, 92901Q. [CrossRef] otwiera się w nowej karcie
  30. Kołakowska, A.; Landowska, A.; Anzulewicz, A.; Sobota, K. Automatic recognition of therapy progress among children with autism. Sci. Rep. 2017, 7. [CrossRef] [PubMed] otwiera się w nowej karcie
  31. Kołakowska, A.; Landowska, A.; Wróbel, M.R.; Zaremba, D.; Czajak, D.; Anzulewicz, A. Applications for investigating therapy progress of autistic children. Ann. Comput. Sci. Inf. Syst. 2016, 8, 1693-1697. [CrossRef] otwiera się w nowej karcie
  32. Landowska, A.; Smiatacz, M. Mobile Activity Plan Applications for Behavioral Therapy of Autistic Children. Man-Mach. Interact. 2016, 4, 115-125. otwiera się w nowej karcie
  33. Shapsough, S.; Hesham, A.; Elkhorazaty, Y.; Zualkernan, I.A.; Aloul, F. Emotion Recognition Using Mobile Phones. In Proceedings of the IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), Munich, Germany, 14-16 September 2016; pp. 276-281. otwiera się w nowej karcie
  34. Muaremi, A.; Arnrich, B.; Tröster, G. Towards Measuring Stress with Smartphones and Wearable Devices during Workday and Sleep. BioNanoScience 2013, 3, 172-183. [CrossRef] [PubMed] otwiera się w nowej karcie
  35. Yin, X.; Shen, W.; Samarabandu, J.; Wang, X. Human Activity Detection Based on Multiple Smart Phone Sensors and Machine Learning Algorithms. In Proceedings of the IEEE 19th International Conference on Computer Supported Cooperative Work in Design, Calabria, Italy, 6-8 May 2015; pp. 582-587. otwiera się w nowej karcie
  36. Bhagya Rekha, S.; Venkateswara Rao, M. Methodical Activity Recognition and Monitoring of a Person through Smart Phone and Wireless Sensors. In Proceedings of the IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI-2017), Chennai, India, 21-22 September 2017;
  37. Sano, A.; Phillips, A.J.; Yu, A.Z.; McHill, A.W.; Taylor, S.; Jaques, N.; Czeisler, C.A.; Klerman, E.B.; Picard, R.W. Recognizing Academic Performance, Sleep Quality, Stress Level, and Mental Health using PersonalityTraits, Wearable Sensors and Mobile Phones. In Proceedings of the IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Cambridge, MA, USA, 9-12 June 2015. [CrossRef] otwiera się w nowej karcie
  38. Sneha, H.R.; Rafi, M.; Manoj Kumar, M.V.; Likewin, T.; Annappa, B. Smartphone Based Emotion Recognition and Classification. In Proceedings of the Second International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 22-24 February 2017. [CrossRef] otwiera się w nowej karcie
  39. Shi, D.; Chen, X.; Wei, J.; Yang, R. User Emotion Recognition Based on Multi-Class Sensors of Smartphone. In Proceedings of the IEEE International Conference on Smart City/SocialCom/SustainCom together with DataCom 2015 and SC2 2015, Chengdu, China, 19-21 December 2015; pp. 478-485. [CrossRef] otwiera się w nowej karcie
  40. Chang, K.; Fisher, D.; Canny, J.; Hartmann, B. How's my mood and stress? An efficient speech analysis library for unobtrusive monitoring on mobile phones. In Proceedings of the BodyNets '11 Proceedings of the 6th International Conference on Body Area Networks, Beijing, China, 7-8 November 2011. otwiera się w nowej karcie
  41. LiKamWa, R.; Liu, Y.; Lane, N.; Zhong, L. Can your smartphone infer your mood. In Proceedings of the PhoneSense Workshop, Seattle, WA, USA, 1-4 November 2011; Available online: https://www.semanticscholar.org/paper/Can-Your-Smartphone-Infer-Your-Mood-%3F-LiKamWa-Liu/ bdb5a9a5d6c9b37193e0c2e9cb198f3edbccf6c2 (accessed on 2 January 2018).
  42. Lu, H.; Frauendorfer, D.; Rabbi, M.; Mast, M.S.; Chittaranjan, G.T.; Campbell, A.T.; Perez, D.G.; Choudhury, T. StressSense: Detecting stress in unconstrained acoustic environments using smartphones. In Proceedings of the ACM Ubiquitous Computing (UbiComp), Pittsburgh, PA, USA, 5-8 September 2012. otwiera się w nowej karcie
  43. Salai, M.; Vassányi, I.; Kósa, I. Stress Detection Using Low Cost Heart Rate Sensors. J. Healthc. Eng. 2016, 2016, 5136705. [CrossRef] [PubMed] otwiera się w nowej karcie
  44. Andeoli, A.; Gravina, R.; Giannantonio, R.; Pierleoni, P.; Fortino, G. SPINE-HRV: A BSN-based Toolkit for Heart Rate Variability Analysis in the Time-Domain, Wearable and Autonomous Biomedical Devices and Systems for Smart Environments: New issues and Characterization. Lect. Notes Electr. Eng. 2010, 75, 369-389. [CrossRef] otwiera się w nowej karcie
  45. Han, L.; Zhang, Q.; Chen, X.; Zhan, Q.; Yang, T.; Zhao, Z. Detecting work-related stress with a wearable device. Comput. Ind. 2017, 90, 42-49. [CrossRef] otwiera się w nowej karcie
  46. Handri, S.; Nomura, S.; Kurosawa, Y.; Yajima, K.; Ogawa, N.; Fukumura, Y. User Evaluation of Student's Physiological Response Towards E-Learning Courses Material by Using GSR Sensor. In Proceedings of the 9th IEEE/ACIS International Conference on Computer and Information Science, Yamagata, Japan, 18-20 August 2010. otwiera się w nowej karcie
  47. Villarejo, M.V.; García Zapirain, B.; Méndez Zorrilla, M. A Stress Sensor Based on Galvanic Skin Response (GSR) Controlled by ZigBee. Sensors 2012, 12, 6075-6101. [CrossRef] [PubMed] otwiera się w nowej karcie
  48. Okkesim, S.; Asyali, M.H.; Kara, S.; Kaya, M.G.; Ardic, I. Evaluation of anxiety related changes in skin conductance and blood volume pulse signals during coronary angiography. In Proceedings of the 14th National Biomedical Engineering Meeting, Balcova, Izmir, Turkey, 20-22 May 2009. [CrossRef] otwiera się w nowej karcie
  49. Healey, J.A.; Picard, R.W. Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 2005, 6, 156-166. [CrossRef] otwiera się w nowej karcie
  50. Gjoreski, M.; Gjoreski, H.; Lustrek, M.; Gams, M. Continuous Live Stress Monitoring with a Wristband. In Proceedings of the ECAI 2016: 22nd European Conference on Artificial Intelligence, The Hague, The Netherlands, 29 August-2 September 2016; Volume 285, pp. 1803-1803. [CrossRef] otwiera się w nowej karcie
  51. Sano, A.; Picard, R.W. Stress Recognition using Wearable Sensors and Mobile Phones. In Proceedings of the Humaine Association Conference on Affective Computing and Intelligent Interaction, Geneva, Switzerland, 2-5 September 2013; pp. 671-676. [CrossRef] otwiera się w nowej karcie
  52. Bao, J.; Li, W.; Tao, X.; Cao, Y.; Shou, X.; Yang, H. Study on Fear Emotion Recognition Based on Traditional Chinese Medicine and Body Sensor Network. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Manchester, UK, 13-16 October 2013; pp. 368-373. [CrossRef] otwiera się w nowej karcie
  53. Bluetooth SIG. Specification of the Bluetooth System. Covered Core Package Version 4.0; The Bluetooth Special Interest Group: Kirkland, WA, USA, 2010.
  54. Jędrzejewska-Szczerska, M.; Wierzba, P.; AbouChaaya, A.; Bechelany, M.; Miele, P.; Viter, R.; Mazikowski, A.; Karpienko, K.; Wróbel, M.S. ALD thin ZnO layer as an active medium in a fiber-optic Fabry-Perotinterferometr. Sens. Actuators A Phys. 2015, 221, 88-94. [CrossRef] otwiera się w nowej karcie
  55. Majchrowicz, D.; Hirsch, M.; Wierzba, P.; Bechelany, M.; Viter, R.; Jędrzejewska-Szczerska, M. Application of Thin ZnO ALD Layersin Fiber-Optic Fabry-Pérot Sensing Interferometers. Sensors 2016, 16, 416. [CrossRef] [PubMed] otwiera się w nowej karcie
  56. Chan, M.; Esteve, D.; Escriba, C.; Campo, E. A review of smart homes-Present state and future Challenges. Comput. Methods Programs Biomed. 2008, 91, 55-81. [CrossRef] [PubMed] otwiera się w nowej karcie
  57. Hensel, W.F. People with autism spectrum disorder in the workplace: An expanding legal frontier. Civ. Lib. Law Rev. 2017, 52, 73-102.
Weryfikacja:
Politechnika Gdańska

wyświetlono 63 razy

Publikacje, które mogą cię zainteresować

Meta Tagi